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Preface

This book is an attempt to explain in detail the
nucleus of one of the most interesting computer op-
erating systems to appear in recent years.

It is the UNIX Time-sharing System, which runs
on the larger models of Digital Equipment Corpora-
tion’s PDP11 computer system, and was developed
by Ken Thompson and Dennis Ritchie at Bell Lab-
oratories. It was first announced to the world in
the July, 1974 issue of the “Communications of the
ACM”.

Very soon in our experience with UNIX it sug-
gested itself as an interesting candidate for formal
study by students, for the following reasons:

e it runs on a system which is already available
to us;

e it is compact and accessible;

e it provides an extensive set of very usable fa-
cilities;
it is intrinsically interesting, and in fact breaks
new ground in a number of areas.

Not least amongst the charms and virtues of the
UNIX Time-sharing System is the compactness of
its source code. The source code for the perma-
nently resident “nucleus” of the system when only
a small number of peripheral devices is represented,
is comfortably less than 9,000 lines of code.

It has often been suggested that 1,000 lines of
code represents the practical limit in size for a pro-
gram which is to be understood and maintained by
a single individual. Most operating systems either
exceed this limit by one or even two orders of mag-
nitude, or else offer the user a very limited set of
facilities, i.e. either the details of the system are
inaccessible to all but the most determined, dedi-
cated and long-suffering student, or else the system
is rather specialised and of little intrinsic interest.

There seem to be three main approaches to
teaching Operating Systems. First there is the
“general principles’ approach, wherein fundamen-
tal principles are expounded, and illustrated by ref-
erences to various existing systems, (most of which
happen to be outside the students’ immediate expe-
rience). This is the approach advocated by the CO-
SINE Committee, but in our view, many students
are not mature or experienced enough to profit from
it.

The second approach is the “building block” ap-
proach, wherein the students are enabled to syn-
thesize a small scale or “toy” operating system for
themselves. While undoubtedly this can be a valu-
able exercise, if properly organised, it cannot but
fail to encompass the complexity and sophistication

of real operating systems, and is usually biased to-
wards one aspect of operating system design, such
as process synchronisation.

The third approach is the “case study” ap-
proach. This is the one originally recommended for
the Systems Programming course in “Curriculum
’68”, the report of the ACM Curriculum Commit-
tee on Computer Science, published in the March,
1968 issue of the “Communications of the ACM”.

Ten years ago, this approach, which advocates
devoting “most of the course to the study of a single
system” was unrealistic because the cost of provid-
ing adequate student access to a suitable system
was simply too high.

Ten years later, the economic picture has changed
significantly, and the costs are no longer a decisive
disadvantage if a minicomputer system can be the
subject of study. The considerable advantages of
the approach which undertakes a detailed analysis
of an existing system are now attainable.

In our opinion, it is highly beneficial for stu-
dents to have the opportunity to study a working
operating system in all its aspects.

Moreover it is undoubtedly good for students
majoring in Computer Science, to be confronted at
least once in their careers, with the task of reading
and understanding a program of major dimensions.

In 1976 we adopted UNIX as the subject for case
study in our courses in Operating Systems at the
University of New South Wales. These notes were
prepared originally for the assistance of students in
those courses (6.602B and 6.657G).

The courses run for one semester each. Before
entering either Course, students are presumed to
have studied the PDP11 architecture and assembly
language, and to have had an opportunity to use the
UNIX operating system during exercises for earlier
courses.

In general, students seem to find the new courses
more onerous, but much more satisfying than the
previous courses based on the “general principles”
approach of the COSINE Committee.

Some mention needs to be made regarding the
documentation provided by the authors of the
UNIX system. As reproduced for use on our cam-
pus, this comprises two volumes of A4 size paper,
with a total thickness of 3 cm, and a weight of 1250
grams.

A first observation is that the whole documen-
tation is not unreasonably transportable in a stu-
dent’s brief case. However it must not be assumed
that this amount of documentation, which is writ-
ten in a fresh, terse, whimsical style, is necessarily
inadequate.

In fact the second observation (which is only
made after considerable experience) is that for ref-
erence purposes, the documentation is remarkably



comprehensive. However there is plenty of scope
for additional tutorial material, one part of which,
it is hoped, is satisfied by these notes.

The actual UNIX operating system source code
is recorded in a separate companion volume enti-
tled “UNIX Operating System Source Code”, which
was first printed in July, 1976. This is a specially
edited selection of code from the Level Six version
of UNIX, as received by us in December, 1975.

During 1976, an initial version of the present
notes was distributed in roneoed form, and only
in the latter part of the year were the facilities of
the “nroff” text formatting program exploited. The
opportunity has recently been taken to revise and
“nroff” the earlier material, to make some revisions
and corrections, and to integrate them into their
present form.

A decision had to be made quite early regarding
the order of presentation of the source code. The in-
tention was to provide a reasonably logical sequence
for the student who wanted to learn the whole sys-
tem. With the benefit of hindsight, a great many
improvements in detail are still possible, and it is
intended that these changes will be made in some
future edition.

It is our hope that this book will be of interest
and value to many students of the UNIX Time-
sharing System. Although not prepared primarily
for use as a reference work, some will wish to use it
as such. The indices provided at the end should go
some of the way towards satisfying the requirement
for reference material at this level.

Since these notes refer to proprietary material
administered by the Western Electric Company,
they can only be made available to licensees of the
UNIX Time-sharing System and hence are unable
to be published through more usual channels.

Corrections, criticism and suggestions for im-
provement of these notes will be very welcome.
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1 Introduction

“UNIX” is the name of a time-sharing system for
PDP11 computers, written by Ken Thompson and
Dennis Ritchie at Bell Laboratories. It was de-
scribed by them in the July, 1974 issue of the “Com-
munications of the ACM”.

UNIX has proved to be effective, efficient and
reliable in operation and was in use at more than
150 installations by the end of 1976.

The amount of effort to write UNIX, while not
inconsiderable in itself (10 man years up to the re-
lease of the Level Six system) is insignificant when
compared to other systems. (For instance, by 1968,
0S/360 was reputed to have consumed more then
five man millennia and TSS/360, another IBM op-
erating system, more than one man millennium.)

Of course there are systems which are easier to
understand than UNIX but, it may be asserted,
these are invariably much simpler and more modest
in what they attempt to achieve. As far as the list
of features offered to users is concerned, UNIX is
in the “big league”. In fact it offers many features
which are notable by their absence from some of
the well-known major systems.

1.1 The UNIX Operating System

The purpose of this document, and its companion,
the “UNIX Operating System Source Code”, is to
present in detail that part of the UNIX time-sharing
system which we choose to call the “UNIX Operat-
ing System”, namely the code which is permanently
resident in the main memory during the operation
of UNIX. This code has the following major func-
tions:

e initialisation;

e process management;

e system calls;

e interrupt handling;

e input/output operations;

e file management.

1.2 Utilities

The remaining part of UNIX (which is much larger!)
is composed of a set of suitably tailored programs
which run as “user programs”, and which, for want
of a better term, may be termed “utilities”.

Under this heading come a number of programs
with a very strong symbiotic relationship with the
operating system such as

e the “shell” (the command language inter-
preter)

e “/etc/init” (the terminal configuration con-
troller)

and a number of file system management programs
such as:

check du rmdir
chmod mkdir sync
clri mkfs umount
df mount update

It should be pointed out that many of the func-
tions carried out by the above-named programs are
regarded as operating system functions in other
computer systems, and that this certainly does con-
tribute significantly to the bulk of these other sys-
tems as compared with the UNIX Operating Sys-
tem (in the way we have defined it).

Descriptions of the function and use of the above
programs may be found in the “UNIX Program-
mer’s Manual” (UPM), either in Section I (for the
commonly used programs) or in Section VIII (for
the programs used only by the System Manager).

1.3 Other Documentation

These notes make frequent reference to the “UNIX
Programmer’s Manual” (UPM), occasional refer-
ence to the “UNIX Documents” booklet, and con-
stant reference to the “UNIX Operating System
Source Code”.

All these are relevant to a complete understand-
ing of the system. In addition, a full study of the
assembly language routines requires reference to the
“PDP11 Processor Handbook”, published by Digi-
tal Equipment Corporation.

1.4 UNIX Programmer’s Manual

The UPM is divided into eight major sections, pre-
ceded by a table of contents and a KWIC (Key
Word In Context) index. The latter is mostly very
useful but is occasionally annoying, as some indexed
material does not exist, and some existing material
is not indexed.

Within each section of the manual, the mate-
rial is arranged alphabetically by subject name.
The section number is conventionally appended
to the subject name, since some subjects appear
in more than one section, e.g. “CHDIR(I)” and
“CHDIR(II)”.

Section I contains commands which either are
recognised by the “shell” command inter-
preter, or are the names of standard user util-
ity programs;



Section IT contains “system calls” which are op-
erating system routines which may be invoked
from a user program to obtain operating sys-
tem service. A study of the operating system
will render most of these quite familiar;

Section III contains “subroutines” which are li-
brary routines which may be called from a
user program. To the ordinary programmer,
the distinctions between Sections IT and III of-
ten appear somewhat arbitrary. Most of Sec-
tion IIT is irrelevant to the operating system;

Section IV describes “special files”, which is an-
other name for peripheral devices. Some of
these are relevant, and some merely interest-
ing. It depends where you are;

Section V describes “File Formats and Conven-
tions”. A lot of highly relevant information is
tucked away in this section;

Sections VI and VII describe “User Maintained”
programs and subroutines. No UNIXophile
will ignore these sections, but they are not
particularly relevant to the operating system;

Section VIII describes “system maintenance” (soft-
ware, not hardware!). There is lots of useful
information here, especially if you are inter-
ested in how a UNIX installation is managed.

1.5 UNIX Documents

This is a somewhat miscellaneous collection of es-
says of varying degrees of relevance:

e Setting up UNIX really belongs in Section
VIII of the UPM (it’s relevant);

e The UNIX Time-sharing System is an up-
dated version of the original “Communica-
tions of the ACM” paper. It should be re-read
at least once per month;

e UNIX for Beginners is useful if your UNIX
experience is limited;

e The tutorials on “C” and the editor, and the
reference manuals for “C” and the assembler
are highly useful unless you are completely
expert;

e The UNIX I/0 System provides a good overview

of many features of the operating system;

e UNIX Summary provides a check list which
will be useful in answering the question what
does an operating system do?

1.6 UNIX Operating System Source
Code

This is an edited version of the operating system as
supplied by Bell Laboratories.

The code selection presumes a “model” system
consisting of:

e PDP11/40 processor;
e RKO05 disk drives;
e LP11 line printer;

PC11 paper tape reader/punch;
e KL11 terminal interface.

The principal editorial changes to the source
code are as follows:

e the order of presentation of files has been
changed;

e the order of material within several files has
been changed;

e to a very limited extent, code has been trans-
ferred between files (with hindsight a lot more
of this would have been desirable);

e about 5% of the lines have been shortened in
various ways to less than 66 characters (by
elimination of blanks, rearrangement of com-
ments, splitting into two lines, etc.);

e a number of comments consisting of a line of
underscore characters have been introduced,
particularly at the end of procedures;

e the size of each file has been adjusted to an ex-
act multiple of 50 lines by padding with blank
lines;

The source code has been printed in double col-
umn format with fifty lines per column, giving one
hundred lines per sheet (or page). Thus there is a
convenient relationship between line numbers and
sheet numbers.

A number of summaries have been included at
the beginning of the Source Code volume:

e A Table of Contents showing files in order
of appearance, together with the Procedures
they contain;

e An alphabetical list of procedures with line
numbers;

o A list of Defined Symbols with their values;

e A Cross Reference Listing giving the line
numbers where each symbol is used. (Re-
served words in “C” and a number of com-
monly used symbols such as “p” and “u” have
been omitted.)



1.7 Source Code Selections

The source code has been divided into five sections,
each devoted primarily to a single major aspect of
the system.

The intention, which has been largely achieved,
has been to make each section sufficiently self-
contained so that it may be studied as a unit and
before its successors have been mastered:

Section One deals with system initialisation, and
process management. It also contains all the
assembly language routines;

Section Two deals with interrupts, traps, system
calls and signals (software interrupts);

Section Three deals primarily with disk opera-
tions for program swapping and basic, block
oriented input/output. It also deals with the
manipulation of the pool of large buffers;

Section Four deals with files and file systems:
their creation, maintenance, manipulation and
destruction;

Section Five deals with “character special files”,
which is the UNIX term for slow speed periph-
eral devices which operate out of a common,
character oriented, buffer pool.

The contents of each section is outlined in more
detail in Chapter Four.

1.8 Source Code Files

Each of the five sections just described consists of
several source code files. The name of each file in-
cludes a suffix which identifies its type:

“.s” denotes a file of assembly language state-

ments;

“.c” denotes a file of executable “C” language

statements;

“.h” denotes a file of “C” language statements
which is not for separate compilation, but
for inclusion in other “.c” files when they are
compiled i.e. the “.h” files contain global dec-
larations.

1.9 TUse of these notes

These notes, which are intended to supplement the
comments already present in the source code, are
not essential for understanding the UNIX operating
system. It is perfectly possible to proceed without
them, and you should attempt to do so as long as
you can.

The notes are a crutch, to aid you when the
going becomes difficult. If you attempt to read
each file or procedure on your own first, your initial
progress is likely to be slower, but your ultimate
progress much faster. Reading other people’s pro-
grams is an art which should be learnt and practised
because it is useful!

1.10 A Note on Programming Stan-
dards

You will find that most of the code in UNIX is of a
very high standard. Many sections which initially
seem complex and obscure, appear in the light of
further investigation and reflection, to be perfectly
obvious and “the only way to fly”.

For this reason, the occasional comments in the
notes on programming style, almost invariably refer
to apparent lapses from the usual standard of near
perfection.

What caused these? Sometimes it appears that
the original code has been patched expediently.
More than once apparent lapses have proved not to
be such: the “bad” code has been found in fact to
incorporate some subtle feature which was not at all
apparent initially. And some allowance is certainly
needed for occasional human weakness.

But on the whole you will find that the authors
of UNIX, Ken Thompson and Dennis Ritchie, have
created a program of great strength, integrity and
effectiveness, which you should admire and seek to
emulate.



2 Fundamentals

UNIX runs on the larger models of the PDP11 se-
ries of computers manufactured by Digital Equip-
ment Corporation. This chapter provides a brief
summary of certain selected features of these com-
puters with particular reference to the PDP11/40.

If the reader has not previously made the ac-
quaintance of the PDP11 series then he is directed
forthwith to the “PDP11 Processor Handbook”,
published by DEC.

A PDP11 computer consists of a processor (also
called a CPU connected to one or more mem-
ory storage units and peripheral controllers via a
bidirectional parallel communication line called the
“Unibus”.

2.1 The Processor

The processor, which is designed around a sixteen
bit word length for instructions, data and program
addresses, incorporates a number of high speed reg-
isters.

2.2 Processor Status Word

This sixteen bit register has subfields which are in-
terpreted as follows:

bits description

14,15 current mode (00 = kernel;)
12,13 previous mode (11 = user;)
5,6,7 processor priority (range 0..7)

4 trap bit

3 N, set if the previous
result was negative

2 Z, set if the previous
result was zero

1 V, set if the previous
result gave an overflow

0 C, set if the previous

operation gave a carry

The processor can operate in two different modes:

kernel and user. Kernel mode is the more privileged
of the two and is reserved by the operating system
for its own use. The choice of mode determines:

e The set of memory management segmentation
registers which is used to translate program
virtual addresses to physical addresses;

e The actual register used as r6, the “stack
pointer”;

e Whether certain instructions such as “halt”
will be obeyed.

2.3 General Registers

The processor incorporates a number of sixteen bit
registers of which eight are accessible at any time
as “general registers”. These are known as r0, rl,
r2, r3, r4, r5, r6 and r7.

The first six of the general registers are available
for use as accumulators, address pointers or index
registers. The convention in UNIX for the use of
these registers is as follows:

r0, rl are used as temporary accumulators during
expression evaluation, to return results from a
procedure, and in some cases to communicate
actual parameters during a procedure call;

r2, r3, r4 are used for local variables during pro-
cedure execution. Their values are almost
always stored upon procedure entry, and re-
stored upon procedure exit;

r5 is used as the head pointer to a “dynamic chain”
of procedure activation records stored in the
current stack. It is referred to as the “envi-
ronment pointer”.

The last two of the “general registers” do have
a special significance and are to all intents, “special
purpose”:

r6 (also known as “sp”) is used as the stack
pointer. The PDP11/40 processor incorpo-
rates two separate registers which may be
used as “sp”, depending on whether the pro-
cessor is in kernel or user mode. No other one
of the general registers is duplicated in this
way;

r7 (also known as “pc”) is used as the program
instruction address register.

2.4 Instruction Set

The PDP11 instruction set includes double, single
and zero operand instructions. Instruction length
is usually one word, with some instructions being
extended to two or three words with additional ad-
dressing information.

With single operand instructions, the operand
is usually called the “destination”; with double
operand instructions, the two operands are called
the “source” and “destination”. The various modes
of addressing are described later.

The following instructions have been used in the
file “m40.s” i.e. the file of assembly language sup-
port routines for use with the 11/40 processor. Note
that N, Z, V and C are the condition codes i.e. bits
in the processor status word (“ps”), and that these
are set as side effects of many instructions besides



just “bit”, “cmp” and “tst” (whose stated function
is to set the condition codes).

adc Add the contents of the C bit to the destina-
tion;

add Add the source to the destination;

ash Shift the contents of the defined register left
the number of times specified by the shift
count. (A negative value implies a right
shift.);

ashe Similar to “ash” except that two registers are
involved;

asl Shift all bits one place to the left. Bit 0 be-
comes 0 and bit 15 is loaded into C;

asr Shift all bits one place to the right. Bit 15 is
replicated and bit 0 is loaded into C;

beq Branch if eaual, i.e. if Z = 1;

bge Branch if greater than or equal to, i.e. if
N=YV;

bhi Branch if higher, i.e if C = 0 and Z = 0;
bhis Branch if higher or the same, i.e. if C = 0;

bic Clear each bit to zero in the destination that
corresponds to a non-zero bit in the source;

bis Perform an “inclusive or” of source and desti-
nation and store the result in the destination;

bit Perform a logical “and” of the source and des-
tination to set the condition codes;

ble Branch if greater than or equal to, i.eif Z =1
orN=1YV;

blo Branch if lower (than zero), if C = 1;
bne Branch if not equal (to zero), i.e. if Z = 0;

br Branch to a location within the range (. -128,
. +127) where “.” is the current location;

clc Clear C;
clr Clear destination to zero;

cmp Compare the source and destination to set the
condition codes. N is set if the source value
is less than the destination value;

dec Subtract one from the contents of the destina-
tion;

div The 32 bit two’s complement integer stored in
rn and r(n+1) (where n is even) is divided by
the source operand. The quotient is left in rn,
and the remainder in r(n+l);

inc Add one to the contents of the destination;
jmp Jump to the destination;

jsr Jump to subroutine. Register values are shuf-
fled as follows:

pc, rn, —(sp) = dest., pc, rn

mfpi Push onto the current stack the value of the
designated word in the “previous” address
space;

mov Copy the source value to the destination;

mtpi Pop the current stack and store the value in
the designated word in the “previous” address
space;

mul Multiply the contents of rn and the source. If
n is even, the product is left in rn and r(n+1);

reset Set the INIT line on the Unibus for 10 mil-
liseconds. This will have the effect of reini-
tialising all the device controllers;

ror Rotate all bits of the destination one place to
the right. Bit 0 is loaded into C, and the
previous value of C is loaded into bit 15;

rts Return from subroutine. Reload pc from rn,
and reload rn from the stack;

rtt Return from interrupt or trap. Reload both pc
and ps from the stack;

sbc Subtract the carry bit from the destination;

sob Subtract one from the designated register. If
the result is not zero, branch back “offset”
words;

sub Subtract the source from the destination;

swab Exchange the high and low order bytes in
the destination;

tst Set the condition codes, N and Z, according to
the contents of the destination;

wait Idle the processor and release the Unibus un-
til a hardware interrupt occurs.

The “byte” version of the following instructions
are used in the file “m40.s”, as well as the “word”
versions described above:

bis inc
clr mov
cmp tst



2.5 Addressing Modes

Much of the novelty and complexity of the PDP11
instruction set lies in the variety of addressing
modes which may be used for defining the source
and destination operands.

The addressing modes which are used in “m40.s”
are described below.

Register Mode: The operand resides in one of
the general registers, e.g.

clr r0
mov rl,r0
add r4,r2

In the following modes, the designated regis-
ter contains an address value which is used to
locate the operand.

Register Deferred Mode: The register contains
the address of the operand, e.g.

inc (rl)
asr (sp)
add (r2),rl

Autoincrement Mode: The register contains the
address of the operand. As a side effect, the
register is incremented after the operation,

e.g.

clr (rl)+

mfpi (r0)+

mov (rl)+,r0
mov r2,(r0)+
cmp (sp)+, (sp)+

Autodecrement Mode: The register is decremented

and then operand, e.g.

inc -(r0)

mov -(rl),r2
mov (r0)+,-(sp)
clr -(sp)

Index Mode: The register contains a value which
is added to a sixteen bit word following the
instruction to form the operand address, e.g.

clr 2(r0)

movb 6(sp), (sp)
movb _reloc(r0),r0
mov -10(r2), (rl)

Depending on your viewpoint, in this mode
the register is either an index register or a
base register. The latter case actually pre-
dominates in “m40.s”. The third example
above is actually one of the few uses of a reg-
ister as an index register. (Note that “_reloc”
is an acceptable variable name.)

There are two addressing modes whose use is
limited to the following two examples:

jsr pc,(r0)+
jmp *0f (r0)

The first example involves the use of the “au-
toincrement deferred” mode. (This occurs in
the routine “call” on lines 0785, 0799.) The
address of a routine intended for execution is
to be found in the word addressed by r0, i.e.
two levels of indirection are involved. The fact
that r0 is incremented as a side effect is not
relevant in this usage.

The second example (which occurs on lines
1055, 1066) is an instance of the “index de-
ferred’ mode. The destination of the “jump”
is the content of the word whose address is
labelled by “0f” plus the value of r0 (a small
positive integer). This is a standard way to
implement a multi-way switch.

The following two modes use the program
counter as the designated register to achieve
certain special effects.

Immediate Mode: This is the pc autoincrement
mode. The operand is thus extracted from the
program string, i.e. it becomes an immediate
operand, e.g.

add $2,r0

add $2,(rl)

bic $17,r0

mov $KISAO,r0
mov $77406, (rl1)+

Relative Mode: This is the pc index mode. The
address relative to the current program counter
value is extracted from the program string
and added to the pc value to form the ab-
solute address of the operand, e.g.

bic $340,PS
bit $1,SSRO
inc SSRO

mov (sp),KISA6

(Cin_

It may be noted that each of the modes
dex”, “index deferred”, “immediate” and “relative”

extends the instruction size by one word.



The existence of the “autoincrement” and “au-
todecrement” modes, together with the special at-
tributes of r6, make it conveniently possible to store
many operands in a stack, or LIFO list, which grows
downwards in memory. There are a number of ad-
vantages which flow from this: code string lengths
are shorter and it is easier to write position inde-
pendent code.

2.6 Unix Assembler

The UNIX assembler is a two pass assembler with-
out macro facilities. A full description may be
found in the “UNIX Assembler Reference Manual”
which is contained in the “UNIX Documents”

The following brief notes should be of some as-
sistance:

(a) a string of digits may define a constant num-
ber. This is assumed to be an octal number
unless the string is terminated by a period
(“.”), when it is interpreted as a decimal num-
ber.

(b) The character “/” is used to signify that the
rest of the line is a comment;

(c) If two or more statements occur on the same
line, they must be separated by semicolons;

(d) The character “.” is used to denote the current
location;

(e) UNIX assembler uses the characters § and “*”
where the DEC assemblers use “#” and “@”

respectively.

(f) An identifier consists of a set of alphanumeric
characters (including the underscore). Only
the first eight characters are significant and
the first may not be numeric;

(g) Names which occur in “C” programs for vari-
ables which are to be known globally, are
modified by the addition of a prefix consisting
of a single underscore. Thus for example the
variable “_regloc” which occurs on line 1025
in the assembly language file, “m40.s”, refers
to the same variable as “regloc” at line 2677
of the file, “trap.c”;

(h) There are two kinds of statement labels: name
labels and numeric labels. The latter consist
of a single digit followed by a colon, and need
not be unique. A reference to “nf” where “n”
is a digit, refers to the first occurrence of the
label “n:” found by searching forward.

A reference to “nb” is similar except that the
search is conducted in the backwards direc-
tion;

(i) An assignment statement of the form
identifier = expression

associates a value and type with the identi-
fier. In the example

. =60".

the operator ’~’ delivers the value of the first
operand and the type of the second operand
(in this case, “location”);

(j) The string quote symbols are “<” and “>”.

(k) Statements of the form

.globl x, y, z

serve to make the names “x”, “y” and “z”

external;

(1) The names “edata” and “.end” are loader
pseudo variables which the define the size of
the data segment, and the data segment plus
the bss segment respectively.

2.7 Memory Management

Programs running on the PDP11 may address di-
rectly up to 64K bytes (32K words) of storage. This
is consistent with an address size of sixteen bits.
Since it is economical and not unreasonable to do
so the larger PDP11 models may be equipped with
larger amounts of memory (up to 256K bytes for
the PDP11/40) plus a mechanism for converting
sixteen bit virtual (program) addresses into physical
addresses of eighteen bits or more. The mechanism,
which is known as the memory management unit,
is simpler on the PDP11/40 than on the 11/45 or
the 11/70.

On the PDP11/40 the memory management
unit consists of two sets of registers for mapping
virtual addresses to physical addresses. These are
known as “active page registers” or “segmentation
registers”. One set is used when the processor is
in user mode and the other set, in kernel mode.
Changing the contents of these registers changes
the details of these mappings. The ability to make
these changes is a privilege that the operating sys-
tem keeps firmly to itself.

2.8 Segmentation Registers.

Each set of segmentation registers is composed of
eight pairs, each consisting of a “page address reg-
ister” (PAR) and a “description register” (PDR).



Each pair of registers controls the mapping of
one page i.e. one eighth part of the virtual address
space which 8K bytes (4K words).

Each page may be regarded as an aggregate of
128 blocks, each of 64 bytes (32 words). This latter
size is the “grain size” for the memory mapping
function, and as a practical consequence, it is also
the “grain size” for memory allocation.

Any virtual address belongs to one page or
other. The corresponding physical address is gener-
ated by adding the relative address within the page
to the contents of the corresponding PAR to form
an extended address (18 bits on the PDP11/40 and
11/45; 22 bits on the 11/70).

Thus each page address register acts as a relo-
cation register for one page.

Each page can be divided on a 32 word bound-
ary into two parts, an upper part and lower part.
Each such part has a size which is a multiple of 32
words. In particular one part may be null, in which
case the other part coincides with the whole page.

One of the two parts is deemed to contain valid
virtual addresses. Addresses in the remaining part
are declared invalid. Any attempt to reference an
invalid address will be trapped by the hardware.
The advantage of this scheme is that space in the
physical memory need only be allocated for the
valid r)art of a page.

2.9 Page Description Register

The page description register defines:

(a) the size of the lower part of the page. (The
number stored is actually the number of 32
word blocks less one);

(b) a bit which is set when the upper part is the
valid part. (Also known as the “expansion
direction” bit);

(c) access mode bits defining “no access” or “read
only access” or “read/write access”.

Note that if the valid part is null, this fact must
be shown by setting the access bits to “no access”.

2.10 Memory Allocation

The hardware does not dictate the way areas in
physical memory which correspond to the valid
parts of pages should be allocated (except to the
extent that they must begin and end on a 32 word
boundary). These areas may be allocated in any
order and may overlap to any extent.

In practice the allocation of areas of physical
memory is much more disciplined as we shall see
in Chapter Seven. Areas for pages which are re-
lated are most often allocated contiguously and in

the order of their page numbers, so that all the
segment areas associated with a single program are
contained within one or at most two large areas of
physical memory.

2.11 Memory Management Status Reg-
isters

In addition to the segmentation registers, on the
PDP11/40 there are two memory management sta-
tus registers:

SRO contains abort error flags and other essential
information for the operating system. In par-
ticular memory management is enabled when
bit 0 of SRO is on;

SR2 is loaded with the 16 bit virtual address at
the beginning of each instruction fetch.

2.12 “i” and “d” Spaces

In the PDP11/45 and 11/70 systems, there are ad-
ditional sets of segmentation registers. Addresses
created using the pc register (r7) are said to belong
to “i” space, and are translated by a different set of
segmentation registers from those used for the re-
maining addresses which are said to belong to “d”
space.

The advantage of this arrangement is that both
“i” and “d” spaces may occupy up to 32K words,
thus allowing the maximum space which can be al-
located to a program to be increased to twice the
space available on the PDP11/40.

2.13 Imitial Conditions

When the system is first started after all the devices
on the Unibus have been reinitialised, the memory
management unit is disabled and the processor is
in kernel mode.

Under these circumstances, virtual (byte) ad-
dresses in the range 0 to 56K are mapped into iden-
tically valued physical addresses. However the high-
est page of the virtual address space is mapped into
the highest page of the physical address space, i.e.
on the PDP11/40 or 11/45, addresses in the range

0160000 to 0177777
are mapped into the range

0760000 to 0777777

2.14 Special Device Registers

The high page of physical memory is reserved for
various special registers associated with the proces-
sor and the peripheral devices. By sacrificing one



page of memory space in this way, the PDP11 de-
signers have been able to make the various device
registers accessible without the need to provide spe-
cial instruction types.

The method of assignment of addresses to reg-
isters in this page is a black art: the values are
hallowed by tradition and are not to be questioned.



3 Reading “C” Programs

Learning to read programs written in the “C” lan-
guage is one of the hurdles that must be overcome
before you will be able to study the source code of
UNIX effectively.

As with natural languages, reading is an easier
skill to acquire than writing. Even so you will need
to be careful lest some of the more subtle points
pass you by.

There are two of the “UNIX Documents” which
relate directly to the “C” language:

“C Reference Manual”, by Dennis Ritchie

“Programming in C — A Tutorial”, by Brian
Kernighan

You should read them now, as far as you can,
and return to reread them from time to time with
increasing comprehension.

Learning to write “C” programs is not required.
However if you have the opportunity, you should
attempt to write at least a few small programs.
This does represent the accepted way to learn a
programming language, and your understanding of
the proper use of such items as:

semicolons;

“:77 and ((::77

“{77 and “}77

“++73 and “___»
declarations;

register variables;

“if” and “for” statements

You will find that “C” is a very convenient lan-
guage for accessing and manipulating data struc-
tures and character strings, which is what a large
part of operating systems is about. As befits a
terminal oriented language, which requires concise,
compact expression, “C” uses a large character set
and makes many symbols such as “*” and “&” work
hard. In this respect it invites comparison with
APL.

There many features of “C” which are reminis-
cent of PL/1, but it goes well beyond the latter in
the range of facilities provided for structured pro-
gramming.

3.1 Some Selected Examples

The examples which follow are taken directly from
the source code.

3.2 Example 1

The simplest possible procedure, which does noth-
ing, occurs twice(!) in the source code as “nullsys”
(2864) and “nulldev” (6577), sic.
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6577 nulldev ()
{
}

While there are no parameters, the parentheses,
“(” and “)”, are still required. The brackets “{” and
“1” delimit the procedure body, which is empty.

3.3 Example 2

The next example is a little less trivial:

6566 nodev ()
{
u.u_error = ENODEV;
}

The additional statement is an assignment state-
ment. It is terminated by a semicolon which is part
of the statement, not a statement separator as in
Algol-like languages.

“ENODEV” is a defined symbol, i.e. a symbol
which is replaced by an associated character string
by the compiler preprocessor before actual compila-
tion. “ENODEV” is defined on line 0484 as 19. The
UNIX convention is that defined symbols are writ-
ten in upper case, and all other symbols in lower
case.

“=" is the assignment operator, and “u.u_error”
is an element of the structure “u”. (See line 0419.)
Note the use of “.” as the operator which selects
an element of a structure. The element name is
“u_error” which may be taken as a paradigm for the
way names of structure elements are constructed in
the UNIX source code: a distinguishing letter is
followed by an underscore followed by a name.

3.4 Example 3

6585 bcopy (from, to, count)
int *from, *to;

{

register *a, *b, c;
a = from;

b = to;

c = count;

do

*¥b++ = *xat++;
while (--cc);

¥

The function of this procedure is very simple: it
copies a specified number of words from one set of
consecutive locations to another set.

There are three parameters. The second line

int *from, *to;



specifies that the first two variables are pointers to
integers. Since no specification is supplied for the
third parameter, it is assumed to be an integer by
default.

The three local variables, a, b, and ¢, have been
assigned to registers, because registers are more ac-
cessible and the object code to reference them is
shorter. “a” and “b” are pointers to integers and
[1P=2)

¢” is an integer. The register declaration could
have been written more pedantically as

register int *a, *b, c;

to emphasise the connection with integers.

The three lines beginning with “do” should be
studied carefully. If “b” is a “pointer to integer”
type, then

*b

denotes the integer pointed to. Thus to copy the
value pointed to by “a” to the location designated
by “b”, we could write

*b = *a;
If we wrote instead
b = a;

this would make the value of “b” the same as
the value of “a”, i.e. “b” and “a” would point to
the same place. Here at least, that is not what is
required.

Having copied the first word from source to des-
tination, we need to increase the values of “b” and
[{P %)

a” so that the point to the next words of their
respective sets. This can be done by writing

b = b+l; a = a+1;

but “C” provides a shorter notation (which is more
useful when the variable names are longer) viz.

b++; at+;

Now there is no difference between the state-
ments “b++;” and “++Db;” here.

However “b++" and “++Db” may be used as
terms in an expression, in which case they are dif-
ferent. In both cases the effect of incrementing “b”
is retained, but the value which enters the expres-
sion is the initial value for “b++” and the final
value for “4++b”.

The “——" operator obeys the same rules as the
“+4” operator, except that it decrements by one.
Thus “——c” enters an expression as the value after
decrementation.

The “4++” and “——" operators are very useful,
and are used throughout UNIX. Occasionally you

will have to go back to first principles to work out
exactly what their use implies. Note also there is a
difference between *b++ and (*b)++.

These operators are applicable to pointers to
structures as well as to simple data types. When a
pointer which has been declared with reference to
a particular type of structure is incremented, the
actual value of the pointer is incremented by the
size of the structure.

We can now see the meaning of the line

*b++ = *at+;

The word is copied and the pointers are incre-
mented, all in one hit.
The line

while (--c¢);

delimits the end of the set of statements which be-
gan after the “do”. The expression in parentheses
“——c”, is evaluated and tested (the value tested
is the value after decrementation). If the value is
non-zero, the loop is repeated, else it is terminated.

Obviously if the initial value for “count” were
negative, the loop would not terminate properly.
If this were a serious possibility then the routine
would have to be modified.

3.5 Example 4
6619 getf (f)

{
register *fp, rf;
rf = f;
if (rf < 0 || rf >= NOFILE)

goto bad;

fp = u.u_ofile[rf];
if (fp != NULL)
return (fp);

bad:
u.u_error = EBADF;
return (NULL);

}

The parameter “f” is a presumed integer, and is
copied directly into the register variable “rf”. (This
pattern will become so familiar that we will now
cease to remark upon it.)

The three simple relational expressions

rf <0 rf >=NOFILE fp !'= NULL

are each accorded the value one if true, and the
value zero if false. The first tests if the value of
“rf” is less than zero, the second, if “rf” is greater
than the value defined by “NOFILE” and the third,
if the value of “fp” is not equal to “NULL” (which
is defined to be zero).

11



The conditions tested by the “if” statements are
the arithmetic expressions contained within paren-
theses.

If the expression is greater than zero the test is
successful and the following statement is executed.
Thus if for instance, “fp” had the value 001375,
then

fp !'= NULL

is true, and as a term in an arithmetic expression, is
accorded the value one. This value is greater than
zero, and hence the statement

return(fp);

would be executed, to terminate further execution
of “getf”, and to return the value of “fp” to the
calling procedure as the result of “getf”.

The expression

rf < 0 || rf >= NOFILE

is the logical disjunction (“or”) of the two simple
relational expressions.

An example of a “goto” statement and associ-
ated label will be noted.

“fp” is assigned a value, which is an address,
from the “rf”-th element of the array of integers
“u_ofile”, which is embedded in the structure “u”.

The procedure “getf” returns a value to its call-
ing procedure. This is either the vale of “fp” (i.e.
an address) or “NULL”.

3.6 Example 5

2113 wakeup (chan)

{
register struct proc *p;
register c, ij;
c= chan;
p= &proc[0];
i= NPROC;
do {
if (p->p_wchan == c) {
setrun(p);
}
p++;
} while (--i);
}

There are a number of similarities between this
example and the previous one. We have a new con-
cept however, an array of structures. To be just a
little confusing, in this example it turns out that
both the array and the structure are called “proc”
(yes, “C” allows this). They are declared on Sheet
03 in the following form:

12

0358 struct proc
{
char p_stat;

} proc[NPROC];

“p” is a register variable of type pointer to a

structure of type “proc”.
p = &procl0];

assigns to “p” the address of the first element of
the array “proc”. The operator “&” in this context
means “the address of”.

Note that if an array has n elements, the ele-
ments have subscripts 0, 1, .., (n-1). Also it is per-
missible to write the above statement more simply
as

P = proc;

There are two statements in between the “do”
and the “while”. The first of these could be rewrit-
ten more simply as

if (p->p wchan == c) setrun (p);

i.e. the brackets are superfluous in this case, and
since “C” is a free form language, the arrangement
of text between lines is not significant.

The statement

setrun (p);

invokes the procedure “setrun” passing the value of
“p” as a parameter (All parameters are passed by

value.). The relation
p—>p_wchan ==

tests the equality of the value of “c” and the value
of the element “p_wchan” of the structure pointed
to by “p”. Note that it would have been wrong to
have written

p.p_wchan ==
because “p” is not the name of a structure.

The second statement, which cannot be com-
bined with the first, increments “p” by the size of
the “proc” structure, whatever that is. (The com-
piler can figure it out.)

In order to do this calculation correctly, the
compiler needs to know the kind of structure
pointed at. When this is not a consideration, you
will notice that often in similar situations, “p” will
be declared simply as



register *p;

because it was easier for the programmer, and the
compiler does not insist.

The latter part of this procedure could have
been written equivalently but less efficiently as

if (procl[i].p_wchan == c)
setrun (&procl[il);
while (++i < NPROC);

3.7 Example 6

5336 geterror (abp)
struct buf *abp;
{
register struct buf bp;
bp = abp;
if (bp->b flags & B_ERROR)
if ((u.u_error=bp->b_error)==0)
u.u_error = EIO;

}

This procedure simply checks if there has been
an error, and if the error indicator “u.u_error” has
not been set, sets it to a general error indication

“B_ERROR’” has the value 04 (see line 4575) so
that, with only one bit set, it can be used as mask
to isolate bit number 2. The operator “&” as used
in

bp->b_flags & B_ERROR

is the bitwise logical conjunction (“and”) applied
to arithmetic values.

The above expression is greater than one if bit
2 of the element “b_flags” of the “buf” structure
pointed to by “bp”, is set.

Thus if there has been an error, the expression

(u.u_error) = bp->b_error)

is evaluated and compared with zero. Now this ex-
pression includes an assignment operator “=". The
value of the expression is the value of “u.u_error”
after the value of “bp->b_flags” has been assigned
to it.

This use of an assignment as part of an expres-
sion is useful and quite common.

3.8 Example 7

3428 stime ()

{
if (suser()) {
time[0] = u.u_ar0[RO];

time[1] = u.u_ar0[R1];
wakeup (tout);
}
}

In this example, you should note that the pro-
cedure “suser” returns a value which is used for the
“if” test. The three statements whose execution
depends on this value are enclosed in the brackets
(({” and “}”.

Note that a call on a procedure with no parame-
ters must still be written-with a set of empty paren-
theses, sic.

suser ()

3.9 Example 8

“C” provides a conditional expression. Thus if “a”
and “b” are integer variables,

(a>b?a:b)

is an expression whose value is that of the larger of
((a” and “b’).

However this does not work if “a” and “b” are
to be regarded as unsigned integers. Hence there is
a use for the procedure

6326 max (a, b)
char *a, *b;
{
if (a > b)
return(a);
return(b) ;

}

The trick here is that “a” and “b”, having been
declared as pointers to characters are treated for
comparison purposes as unsigned integers.

The body of the procedure could have been writ-
ten as

max (a, b)
char *a, *xb;
{
if (a > b)
return(a);
else
return(b) ;

but the nature of “return” is such that the “else”
is not needed here!
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3.10 Example 9

Here are two quickies which introduce some differ-
ent and exotic looking expressions. First:

7679 schar()
{
return *u.u_dirp++ & 0377);

}
where the declaration

char *u_dirp;

is part of the declaration of the structure “u”.

“u.u_dirp” is a character pointer. Therefore the
value of “*u.u_dirp++” is a character. (Incremen-
tation of the pointer occurs as a side effect.)

When a character is loaded into a sixteen bit
register, sign extension may occur. By “and”ing
the word with 0377 any extraneous high order bits
are eliminated. Thus the result returned is simply
a character.

Note that any integer which begins with a zero
(e.g. 0377) is interpreted as an octal integer.

The second example is:

1771 nseg(n)
{
return ((n+127)>>7);
}

The value returned is n divided by 128 and
rounded up to the next highest “integer”.

Note the use of the right shift operator “>>"” in
preference to the division operator “/”.

3.11 Example 10

Many of the points which have been introduced
above are collected in the following procedure:

2134 setrun (p)
{

register struct proc *rp;

rp = P;

rp->p_wchan = 0;

rp->p_stat = SRUN;

if (rp->p_pri < curpri)
runrun++;

if (runout !'= 0 &&

(rp->p_flag & SLOAD) == 0) {

runout = 0;
wakeup (&runout);

}
}

Check your understanding of “C” by figuring out
what this one does.
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There are two additional features you may need
to know about:

“&&” is the logical conjunction (“and”) for re-
lational expressions. (Cf. “||” introduced earlier.)

The last statement contains the expression

&runout

which is syntactically an address variable but
semantically just a unique bit pattern.

This is an example of a device which is used
throughout UNIX. The programmer needed a unique
bit pattern for a particular purpose. The exact
value did not matter as long as it was unique. An
adequate solution to the problem was to use the
address of a suitable global variable.

3.12 Example 11

4856 bawrite (bp)

struct buf *bp;

{
register struct buf *rbp;
rbp = bp;
rbp->b_flags =| B_ASYNC;
buwrite (rbp);

X

The second last statement is interesting because
it could have been written as

rbp->b_flags = rbp->b_flags | B_ASYNC;

In this statement the bit mask “B ASYNC” is
“or”ed into “rbp->b_flags”. The symbol “|” is the
logical disjunction for arithmetic values.

This is an example of a very useful construc-
tion in UNIX, which can save the programmer much
labour. If “O” is any binary operator, then

x =x 0 a;

where “a” is an expression, can be rewritten more

succinctly as
x =0 a;

A programmer using this construction has to
be careful about the placement of blank characters,
since

x =+ 1;
is different from
x = +1;
What is to be the meaning of

x =+1; ?



3.13 Example 12

6824 ufalloc ()
{
register i;
for (i=0; i<NOFILE; i++)
if (u.u_ofile[i]==NULL) {
u.u_ar0O[RO] = i;
return (i);
}
u.u_error = EMFILE;
return (-1);

}

This example introduces the “for” statement,
which has a very general syntax making it both
powerful and compact.

The structure of the “for” statement is ade-
quately described on page 10 of the “C Tutorial”,
and that description is not repeated here.

The Algol equivalent of the above “for” state-
ment would be

for i:=1 step 1 until NOFILE-1 do

The power of the “for” statement in “C” de-
rives from the great freedom the programmer has
in choosing what to include between the parenthe-
ses. Certainly there is nothing which restricts the
calculations to integers, as the next example will
demonstrate.

3.14 Example 13

3949 signal (tp, sig)
{
register struct proc *p;
for (p=proc;p<&proc[NPROC];p++)
if (p->p ttyp == tp)
psignal (p,sig);
}

In this example of the “for” statement, the
pointer variable “p” is stepped through each ele-
ment of the array “proc” in turn.

Actually the original code had

for (p=&procl0];p<&proc[NPROC] ;p++)

but it wouldn’t fit on the line! As noted earlier, the
use of “proc” as an alternative to the expression
“&proc[0]” is acceptable in this context.

This kind of “for” statement is almost a cliche
in UNIX so you had better learn to recognise it.
Read it as

for p = each process in turn

Note that “proc[NPROC]” is the address of the
(NPROC+1)-th element of the array (which does

not of course exist) i.e. it is the first location be-
yond the end of the array.

At the risk of overkill we would point out again
that whereas in the previous example

it+;

’

wn
1

meant add one to the integer “i”, here

pt+;

’

means “skip p to point to the next structure”.

3.15 Example 14

8870 lpwrite ()
{
register int c;
while ((c=cpass()) >= 0)
lpcanon(c);

}

This is an example of the “while” statement,
which should be compared with the “do ... while...”
construction encountered earlier. (Cf. the “while”
and “repeat” statements of Pascal.)

The meaning of the procedure is

Keep calling “cpass” while the result is positive,
and pass the result as a parameter to a call on lp-
canon.

Note the redundant “int” in the declaration for
“c”. Tt isn’t always omitted!

3.16 Example 15

The next example is abbreviated from the original:

5861 seek ()
{
int n[2];
register *fp, t;
fp = getf (u.u_ar0[RO]);
t = u.u_argl[1];
switch (t) {

case 1:

case 4:
n[0] =+ fp->f_offset[0];
dpadd (n, fp—>f_offset[1]);
break;

default:
n[0] =+ fp->f_inode->i size0 & 0377;
dpadd (n,fp->f_inode->i_sizel);

case 0:
case 3:

H
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Note the array declaration for the two word ar-
ray “n”, and the use of getf (which appeared in
Example 4).

The “switch” statement makes a multiway branch
depending on the value of the expression in paren-

theses. The individual parts have “case labels”:

e If “t” is one or four, then one set of actions is
in order.

o If “t” is zero or three, nothing is to be done
at all.

o If “¢” is anything else, then a set of actions
labelled “default” is to be executed.

Note the use of “break” as an escape to the
next statement after the end of the “switch” state-
ment. Without the “break”, the normal execu-
tion sequence would be followed within the “switch”
statement.

Thus a “break” would normally be required at
the end of the “default” actions. It has been omit-
ted safely here because the only remaining cases
actually have null actions associated with them.

The two non-trivial pairs of actions represent
the addition of one 32 bit integer to another. The
later versions of the “C” compiler will support
“long” variables and make this sort of code much
easier to write (and read).

Note also that in the expression

fp->f_inode->i_size0

there are two levels of indirection.

3.17 Example 16

6672 closei (ip, rw)

int *ip;

{
register *rip;
register dev, maj;
rip = ip;
dev = rip->i_addr[0];
maj = rip->i_addr[0].d major;
switch (rip->i_mode&IFMT) {

case IFCHR:
(*cdevsw[maj].d_close) (dev,rw);
break;

case IFBLK:

(*bdevsw[maj]l.d_close) (dev,rw);

}
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iput (rip);
}

This example has a number of interesting fea-
tures.
The declaration for “d_major” is

struct {
char d_minor;
char d_major;

}

so that the value assigned to “maj” is the high order
byte of the value assigned to “dev”.

In this example, the “switch” statement has
onlv two non-null cases, and no “default”. The ac-
tions for the recognised cases, e.g.

(*¥bdevsw[maj] .d_close) (dev,rw);

look formidable

First it should be noted that this is a procedure
call, with parameters “dev” and “rw”.

Second “bdevsw” (and “cdevsw”) are arrays of
structures, whose “d_close” element is a pointer to
a function, i.e.

bdevsw[maj]
is the name of a structure, and
bdevsw[maj].d_close

is an element of that structure which happens to be
a pointer to a function, so that

*xbdevsw[maj].d_close

is the name of a function. The first pair of paren-
theses is “syntactical sugar” to put the compiler in
the right frame of mind!

3.18 Example 17

We offer the following as a final example:

4043 psig ()
{
register n, p;

switch (n) {

case SIGQRIT:
case SIGINS:
case SIGTRC:
case SIGIOT:
case SIGEMT:
case SIGEPT:
case SIGBUS:
case SIGSEG:



case SIGSYS:
u.u argl[0] = n;
if (core())

n =+ 0200;
}
u.u_arg[0]=(u.u_ar0[R0]<<8) | n;
exit ();

}

Here the “switch” selects certain values for “n”
for which the one set of actions should be carried
out.

An alternative would have been to write a “mon-
ster” “if” statement such as

if (n==SIGQUIT || n==SIGINS ||
|| n==SIGSYS)

but that would not have been either transparent or
efficient.

Note the addition of an octal constant to “n”
and the method of composing a 16 bit value from
two eight bit values.
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4 An Overview

The purpose of this chapter is to survey the source
code as a whole i.e. to present the “wood” before
the “trees”

Examination of the source code will reveal that
it consists of some 44 distinct files, of which:

e two are in assembly language, and have names
ending in “s”;

e 28 are in the “C” language and have names
ending in “c”;

e 14 are in the “C” language, but are not in-
tended for independent compilation, and have
names ending in “h”.

The files and their contents were arranged by
the programmers presumably to suit their conve-
nience and not for ours. In many ways the divisions
between files is irrelevant to the present discussion
and might well be abolished entirely.

As mentioned already in Chapter One, the files
have been organised into five sections. As far as was
possible, the sections were chosen to be of roughly
equal size, to cluster files which are strongly asso-
ciated and to separate files which are only weakly
associated.

4.1 Variable Allocation

The PDP11 architecture allows efficient access to
variables whose absolute address is known, or whose
address relative to the stack pointer can be deter-
mined exactly at compile time.

There is no hardware support for multiple lexi-
cal levels for variable declarations such as are avail-
able in block structured languages such as Algol or
Pascal. Thus “C” as implemented on the PDP11
supports only two lexical levels: global and local.

Global variables are allocated statically; local
variables are allocated dynamically within the cur-
rent stack area or in the general registers (r2, r3
and r4 are used in this way).

4.2 Global Variables

In UNIX with very few exceptions, the declarations
for global variables have been all gathered into the
set of “h” files. The exceptions are:

(a) the static variable “p” (2180) declared in “swtch”
which is stored globally, but is accessible only
from within the procedure “swtch” (Actually

p” is a very popular name for local variables
in UNIX.);
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(b) a number of variables such as “swbuf” (4721)
which are referenced only by procedures within
a single file, and are declared at the beginning
of that file.

Global variables may be declared separately
within each file in which they are referenced. It is
then the job of the loader, which links the compiled
versions of the program files together to match up
the different declarations for the same variable.

4.3 The ‘C’ Preprocessor

If global declarations must be repeated in full in
each file (as is required by Fortran, for instance)
then the bulk of the program is increased, and mod-
ifying a declaration is at best a nuisance, and at
worst, highly error-prone.

These difficulties are avoided in UNIX by use of
the preprocessor facility of the “C” compiler. This
allows declarations for most global variables to be
recorded once only in one of the few “h” files.

Whenever the declaration for a particular global
variable is required the appropriate “h” file can then
be “included” in the file being compiled.

UNIX also uses the “h” files as vehicles for lists
of standard definitions for many symbolic names
which represent constants and adjustable parame-
ters, and for declaration of some structure types.

For example, if the file bottle.c contains a pro-
cedure “glug” which global variable called “gin”
which is declared in the file “box.h” then a state-
ment:

#include "box.h"

must be inserted at the beginning of the file “bot-
tle.c” When the file “bottle.c” is compiled, all dec-
larations in “box.h” are compiled, and since they
are found before the beginning of any procedure in
“bottle.c” they are flagged as external in the relo-
catable module which is produced.

When all the object modules are linked to-
gether, a reference to “gin” will be found in every
file for which the source included “box.h” All these
references will be consistent and the loader will al-
locate a single space for “gin” and adjust all the
references accordingly.

4.4 Section One

Section One contains many of the “h” files and the
assembly language files.

It also contains a number of files concerned with
system initialisation and process management.



4.5 The First Group of ‘.h’ Files

param.h [Sheet 01] contains no variable declara-
tions, but many definitions for operating sys-
tem constants and parameters, and the decla-
rations for three simple structures. The con-
vention will be noted of using “upper case
only” for defined constants.

systm.h [Sheet 02; Chapter 19] consists entirely
of declarations (with definitions of the struc-
tures “callout” and “mount” as side-effects).
Note that none of the variables is initialised
explicitly, and hence all are initialised to zero.

The dimensions for the first three arrays are
parameters defined in param.h. Hence any file
which “includes” “systm.h” must have previ-
ously included “param.h”.

seg.h [Sheet 03] contains a few definitions and one
declaration, which are used for referencing the
segmentation registers. This file could be ab-
sorbed into “param.h” and “systm.h” without
any real loss.

proc.h [Sheet 03; Chapter 7] contains the impor-
tant declaration for “proc” which is both a
structure type and an array of such struc-
tures. Each element of the “proc” structure
has a name which begins with “p_” and no
other variable is so named. Similar conven-
tions are used for naming the elements of the
other structures.

The sets of values for the first two elements,
“pstat” and “p_flag” have individual names
which are define.

user.h [Sheet 04; Chapter 7] contains the declara-
tion for the very important “user” structure,
plus a set of defined values for “u_error”.

Only one instance of the “user” structure is
ever accessible at one time. This is referenced
under the name “u” and is in the low address
part of a 1024 byte area known as the “per
process data area”.

In general the complete “h” files are not anal-
ysed in detail later in this text. It is expected
that the reader will refer to them from time
to time (with increasing familiarity and un-
derstanding).

4.6 Assembly Language Files

There are two files in assembly language which com-
prise about 10% of the source code. A reasonable
acquaintance with these files is necessary.

low.s [Sheet 05, Chapter 9] contains information,
including the trap vector, for initialising the
low address part of main memory. This file is
generated by a utility program called “mk-
conf” to suit the set of peripheral devices
present at a particular installation.

m40.s [Sheets 06..14; Chapters 6, 8, 9, 10, 22]
contains a set of routines appropriate to the
PDP11/40, to carry out a variety of spe-
cialised functions which cannot be imple-
mented directly in “C”.

Sections of this file are introduced into the dis-
cussion as and where appropriate. (The largest of
the assembler procedures, “backup” has been left
to the reader to survey as an exercise.)

There is an alternative to “m40.s” which is not
presented here, namely “m45.s” which is used on
PDP11/45’s and 70’s.

4.7 Other Files in Section One

main.c [Sheets 15..17; Chapters 6, 7] contains
“main” which performs various initialisation
tasks to get UNIX running. It also contains
“sureg” and “estabur” which set the user seg-
mentation registers.

slp.c [Sheets 18..22; Chapters 6, 7, 8, 14] contains
the major procedures required for process
management including “newproc”, “sched”,
“sleep” and “swtch”.

prf.c [Sheets 23, 24; Chapter 5] contains “panic”
and a number of other procedures which pro-
vide a simple mechanism for displaying ini-
tialisation messages and error messages to the
operator.

malloc.c [Sheet 25; Chapter 5] contains “malloc”
and “mfree” which are used to manage mem-
ory resources.

4.8 Section Two

Section Two is concerned with traps, hardware in-
terrupts and software interrupts.

Traps and hardware interrupts introduce sud-
den switches into the CPU’s normal instruction ex-
ecution sequence. This provides a mechanism for
handling special conditions which occur outside the
CPU’s immediate control.

Use is made of this facility as part of another
mechanism called the “system call” whereby a user
program may execute a “trap” instruction to cause
a trap deliberately and so obtain the operating sys-
tem’s attention and assistance.
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The software interrupt (or “signal” is a mecha-
nism for communication between processes, partic-
ularly when there is “bad news”.

reg.h [Sheet 26; Chapter 10] defines a set of con-
stants which are used in referencing the pre-
vious user mode register values when they are
stored in the kernel stack.

trap.c [Sheets 26..28; Chapter 12] contains the
“C” procedure “trap” which recognises and
handles traps of various kinds.

sysent.c [Sheet 29; Chapter 12] contains the decla-
ration and initialisation of the array “sysent”
which is used by “trap” to associate the ap-
propriate kernel mode routine with each sys-
tem call type.

sysl.c [Sheets 30..33; Chapters 12, 13] contains
various routines associated with system calls,
including “exec” “exit” “wait” and “fork”.

sys4.c [Sheets 34..36; Chapters 12, 13, 19] contains
routines for “unlink”, “kill” and various other
minor system calls.

clock.c [Sheets 37, 38; Chapter 11] contains “clock”
which is the handler for clock interrupts, and
which does much of the incidental housekeep-
ing and basic accounting.

sig.c [Sheets 39..42; Chapter 13] contains the pro-
cedures which handle “signals” or “software
interrupts” These provide facilities for inter-
process communication and tracing.

4.9 Section Three

Section Three is concerned with basic input/output
operations between the main memory and disk stor-
age.

These operations are fundamental to the activi-
ties of program swapping and the creation and ref-
erencing of disk files.

This section also introduces procedures for the
use and manipulation of the large (512 byte) buffers.

text.h [Sheet 43; Chapter 14] defines the “text”
structure and array. One “text” structure is
used to define the status of a shared text seg-
ment.

text.c [Sheets 43, 44; Chapter 14] contains the pro-
cedures which manage the shared text seg-
ments.

buf.h [Sheet 45; Chapter 15] defines the “buf”
structure and array, the structure “devtab”
and names for the values of “b_error” All
these are needed for the management of the
large (512 byte) buffers.
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conf.h [Sheet 46; Chapter 15] defines the arrays
of structures “bdevsw” and “cdevsw” which
specify the device oriented procedures needed
to carry out logical file operations.

conf.c [Sheet 46; Chapter 15] is generated, like
“low.s” by the “mkconf” utility to suit the
set of peripheral devices present at a particu-
lar installation. It contains the initialisation
for the arrays “bdevsw” and “cdevsw” which
control the basic i/o operations.

bio.c [Sheets 47..53; Chapters 15, 16, 17] is the
largest file after “m40.s” It contains the pro-
cedures for manipulation of the large buffers,
and for basic block oriented i/o.

rk.c [Sheets 53, 54; Chapter 16] is the device driver
for the RK11/K05 disk controller.

4.10 Section Four

Section Four is concerned with files and file systems.

A file system is a set of files and associated ta-
bles and directories organised onto a single storage
device such as a disk pack.

This section covers the means of creating and
accessing files; locating files via directories organis-
ing and maintaining file systems. It also includes
the code for an exotic breed of file called a “pipe”.

file.h [Sheet 55; Chapter 18] defines the “file”
structure and array.

filsys.h [Sheet 55; Chapter 20] defines the “filsys”
structure which is copied to and from the “su-
per block” on “mounted” file systems.

ino.h [Sheet 56] describes the structure of “inodes”
as recorded on the “mounted” devices. Since
this file is not “included” in any other, it re-
ally exists for information only.

inode.h [Sheet 56; Chapter 18] defines the “inode”
structure and array. “inodes” are of funda-
mental importance in managing the accesses
of processes to files.

sys2.c [Sheets 57..59; Chapters 18, 19] contains a
set of routines associated with system calls in-
cluding “read”, “write”, “creat”, “open” and
“close”

sys3.c [Sheets 60, 61; Chapters 19, 20] contains a
set of routines associated with various minor
system calls.

rdwri.c [Sheets 62, 63; Chapter 18] contains inter-
mediate level routines involved with reading
and writing files.



subr.c [Sheets 64, 65; Chapter 18] contains more
intermediate level routines for i/o, especially
“bmap” which translates logical file pointers
into physical disk addresses.

fio.c [Sheets 66..6; Chapters 18, 19] contains inter-
mediate level routines for file opening, closing
and control of access.

alloc.c [Sheets 69..72; Chapter 20] contains proce-
dures which manage the allocation of entries
in the “inode” array and of blocks of disk stor-
age.

iget.c [Sheets 72..74; Chapters 18, 19, 20] con-
tains procedures concerned with referencing
and updating “inodes”.

nami.c [Sheets 75, 76; Chapter 19] contains the
procedure “namei” which searches the file di-
rectories.

pipe.c [Sheets 77, 78; Chapter 21] is the “device
driver” for “pipes” which are a special form
of short disk file used to transmit information
from one process to another.

4.11 Section Five

Section Five is the final section. It is concerned
with input/output for the slower, character oriented
peripheral devices.
Such devices share a common buffer pool, which
is manipulated by a set of standard procedures.
The set of character peripheral devices are ex-
emplified by the following:

KL/DL11 interactive terminal
PCi11 paper tape reader/punch
LP11 line printer

tty.h [Sheet 79; Chapters 23, 24] defines the “clist”
structure (used as a list head for character
buffer queues), the “tty” structure (stores rel-
evant data for controlling an individual ter-
minal), declares the “partab” table (used to
control transmission of individual characters
to terminals) and defines names for many as-
sociated parameters.

kl.c [Sheet 80; Chapters 24, 25] is the device driver
for terminals connected via KL11 or DL11 in-
terfaces.

tty.c [Sheets 81..85; Chapters 23, 24, 25] contains
common procedures which are independent of
the attaching interfaces, for controlling trans-
mission to or from terminals, and which take
into account various terminal idiosyncrasies.

pc.c [Sheets 86,87; Chapter 22] is the device han-
dler for the PC11 paper tape reader/punch
controller.

Ip.c [Sheets 88, 89; Chapter 22] is the device han-
dler for the LP11 line printer controller.

mem.c [Sheet 90] contains procedures which pro-
vide access to main memory as though it were
an ordinary file. This code has been left to the
reader to survey as an exercise.
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Section One

Section One contains many of the global declaration
files and the assembly language files.

It also comtains a number of files concerned with
system initialisation and process management.

5 Two Files

This chapter is intended to provide a gentle intro-
duction to the source code by looking at two files in
Section One which can be isolated reasonably well
from the rest.

The discussion of these files supplements the dis-
cussion of Chapter Three and includes a number of
additional comments regarding the syntax and se-
mantics of the “C” language.

5.1 The File ‘malloc.c’
This file is found on Sheet 25 of the Source code,
and consists of just two procedures:

malloc (2528) mfree (2556)

These are concerned with the allocation and
subsequent release of two kinds of memory re-
sources, namely:

main memory in units of 32 words (64 bytes);

disk swap area in units of 256 words (512 bytes).

For each of these two kinds of resource, a
list of available areas is maintained within a re-
source “map” (either “coremap” or “swapmap”).
A pointer to the appropriate resource “map” is al-
ways passed to “malloc” and “mfree” so that the
routines themselves do not have to know the kind
of resource with which they are dealing.

Each of “coremap” and “swapmap” is an ar-
ray of structures of the type “map” as declared at
line 2515. This structure consists of two character
pointers i.e. two unsigned integers.

The declarations of “coremap” and “swapmap”
are on lines 0203, 0204. Here the “map” struc-
ture is completely ignored — a regrettable program-
ming short-cut which is possible because it is not
detected by the loader. Thus the actual numbers
of list elements in “coremap” and “swapmap” are
“CMAPSIZ/2” and “SMAPSIZ/2” respectively.

5.2 Rules for List Maintenance

(a) Each available area is defined by its size and
relative address (reckoned in the units appro-
priate to the resource);
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(b) The elements of each list are arranged at all
times in order of increasing relative address.
Care is taken that no two list elements repre-
sent contiguous areas — the alternative course,
to merge the two areas into a single larger area
is always taken;

(c) The whole list can be scanned by looking at
successive elements of the array, starting with
the first, until an element with a zero size is
encountered. This last element is a “sentinel”
which is not part of the list proper.

The above rules provide a complete specifica-
tion for “mfree”, and a specification for “malloc”
which is complete except in one respect: We need
to specify how the resource allocation is actually
made when there exists more than one way of per-
forming it.

The method adopted in “malloc” is one known
as “First Fit” for reasons which should become ob-
vious.

As an illustration of how the resource “map”
is maintained, suppose the following three resource
areas were available:

e an area of size 15 beginning at location 47 and
ending at location 61;

e an area of size 13 spanning addresses 27 to 39
inclusive;

e an area of size 7 beginning at location 65.
Then the “map” would contain:

Entry Size Address

0 13 27
1 15 47
2 7 65
3 0 ??
4 7? ??

If a request for a space of size 7 were received,
the area would be allocated starting at location 27,
and the “map” would become:

Entry Size Address

0 6 34
1 15 47
2 7 65
3 0 27
4 77 ??

If the area spanning addresses 40 to 46 inclusive
is returned to the available list, the “map” would
become:



Entry Size Address

0 28 34
1 7 65
2 0 ??
3 ?? 7?

Note how the number of elements has actu-
ally decreased by one because of amalgamation
though the total available resources have of course
increased.

Let us now turn to a consideration of the actual
source code.

5.3 malloc (2528)

The body of this procedure consists of a “for” loop
to search the “map” array until either:

(a) the end of the list of available resources is en-
countered; or

(b) an area large enough to honour the current re-
quest is found;

2534: The “for” statement initialises “bp” to point
to the first element of the resource map. At
each succeeding iteration “bp” is incremented
to point to the next “map” structure.

Note that the continuation condition
“bp->m_size” is an expression, which becomes zero
with the sentinel is referenced. This expression
could have been written equivalently but more
transparently as “bp->m_size>0".

Note also that no explicit test for the end of the
array is made. (It can be shown that this latter is
not necessary provided CMAPSIZ, SMAPSIZ > 2
* NPROC))

2535: If the list element defines an area at least as
large as that requested, then ...

2536: Remember the address of the first unit of
the area;

2537: Increment the address stored in the array
element;

2538: Decrement the size stored in the element and
compare the result with zero (i.e. was it an
exact fit?);

2539: In the case of an exact fit, move all the re-
maining list elements (up to and including the
sentinel) down one place.

Note that “(bp-1)” points to the structure be-
fore the one referenced by “bp”;

2542: The “while” continuation condition does
not test the equality of “(bp-1)->m_size” and
bm->m _size !

The value tested is the value assigned to
“(bp->m_size” copied from “bp->m size”.

(You are forgiven for not recognising this at
once.);

2543: Return the address of the area. This repre-
sents the end of the procedure and hence very
definitely the end of the “for” loop.

Note that a value of zero returned means “no
luck” This is based on the assumption that
no valid area can ever begin at location zero.

5.4 mfree (2556)

This procedure returns the area of size “size” at
address “aa” to the “resource map” designated by
“mp”. The body of the procedure consists of a one
line “for” statement, followed by a multiline “if”
statement.

2564: The semicolon at the end of this line is ex-
tremely significant, terminating as it does the
empty statement. (It would aid legibility if
this character were moved to a line on its own,
as is done on line 2394.)

Depending on your point of view, this state-
ment demonstrates either the power or the
obscurity of the “C” language. Try writing
equivalent code to this statement in another
language such as Pascal or PL/1.

Step “bp” through the list until an element
is encountered either with an address greater
than the address of the area being returned.

i.e. not “bp->m_addr < a”
or which indicates the end of the list

i.e. not “bp->m size != 07;

2565: We have now located the element in front of
which we should insert the new list element.
The question is: Will the list grow larger by
one element or will amalgamation keep the
number of elements the same or even reduce
it by one?

If “bp > mp” we are not trying to insert at
the beginning of the list. If
(bp-1)->m_addr+ (bp-1)->m _size==a

then the area being return abuts the previous
element in the list;

2566: Increase the size of the previous list element
by the size of the area being returned;
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2567: Does the area being returned also abut the
next element of the list? If so

2568: Add the size of the next element of the list
to the size of the previous element;

2569: Move all the remaining list elements (up to
the one containing the final zero size) down
one place.

Note that if the test on line 2567 fortuitously
gives a true result when “bp->m size” is zero
no harm is done;

2576: This statement is reached if the test on line
2565 failed i.e. the area being returned cannot
be amalgamated with the previous element on
the list.

Can it be amalgamated with the next ele-
ment? Note the check that the next element
is not null;

2579: Provided the area being returned is gen-
uinely non-null (perhaps this test should have
been made sooner?) add a new element to
the list and push all the remaining elements
up one place.

5.5 In conclusion ...

The code for these two procedures has been written
very tightly. There is little, if any, “fat” which could
be removed to improve run time efficiency. However
it would be possible to write these procedures in a
more transparent fashion.

If you feel strongly on this point, then as an
exercise, you should rewrite “mfree” to make its
function more easily discernible.

Note also that the correct functioning of “mal-
loc” and “mfree” depends on correct initialisation
of “coremap” and “swapmap”. The code to do this
occurs in the procedure “main” at lines 1568, 1583.

5.6 The File ‘prf.c’

This file is found on Sheets 23 and 24, and contains
the following procedures:

printf (2340)
printn (2369)
putchar (2386)

panic (2416)
prdev (2433)
deverror (2447)

The calling relationship between these proce-
dures is illustrated below:
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panic deverror
I |
| prdev
I |
\ /
printf
I
printn
I
putchar

5.7 printf (2340)

The procedure “printf” provides a direct, unsophis-
ticated low-level, unbuffered way for the operating
system to send messages to the system console ter-
minal. It is used during initialisation and to report
hardware errors or the imminent collapse of the sys-
tem.

(These versions of “printf” and “putchar” run
in kernel mode and are similar to, but not the same
as, the versions invoked by a “C” program which
runs in user mode. The latter versions of “printf”
and “putchar” live in the library “/lib/libc.a”.
You may still find it useful to read the sections
“PRINTF(III)” and “PUTCHAR(IIL)” of the UPM
at this point.)

2340: The programmer must have been carried
away when he declared all the parameters for
this procedure. In fact the procedure body
only contains references to “x1” and “fmt”.

This serves to reveal one of the facts of “C”
programming. The rules for matching parameters
in procedure calls and procedure declarations are
not enforced, not even with respect to the numbers
of parameters.

Parameters are placed on the stack in reverse
order. Thus when “printf” is called “fmt” will be
nearer to the “top of stack” than “x1”, etc.

stack grows down

top of stack



“x1” has a higher address then “fmt” but a lower

address then “x2”, because stacks grow downwards
on the PDP11.

2341: “fmt” may be interpreted as a constant char-
acter pointer. This declaration is (almost)
equivalent to

“char *fmt;”

The difference is that here the value of “fmt”
cannot be changed;

2346: “adx” is set to point to “x1”. The expression
“&x1” is the address of “x1”. Note that since
“x1” is a stack location, this expression cannot
be evaluated at compile time.

(Many of the expressions you will find else-
where involving the addresses of variables or
arrays are effective because they can be eval-
uated at compile or load time.);

2348: Extract into the register “c” successive char-
acters from the format string;

2349: If “¢” is not a ‘%’ then ...

2350: If “¢” is a null character (‘\0’), this indicates
the end of the format string in the normal
way, and “printf” terminates;

2351: Otherwise call “putchar” to send the char-
acter to the system console terminal;

2353: A ‘%’ character has been seen. Get the next
character (it had better not be the ‘\0’!);

2354: If this character is a ‘d’ or ‘I’ or ‘0o’, call
“printn” passing as parameters the value ref-
erenced by “adx” and either the value “8” or
“10” depending on whether “c” is ‘o’ or not.
(The ‘d’ and ‘I’ codes are clearly equivalent.)

“printn” expresses the binary numbers as a
set of digit characters according to the radix
supplied as the second parameter;

2356: If the editing character is ‘s’, then all but
the last character of a null terminated string
is to be sent to the terminal. “adx” should
point to a character pointer in this case;

2361: Increment “adx” to point to the next word
in the stack i.e. to the next parameter passed
to “printf”;

2362: Go back to line 2347 and continue scanning
the format string. Enthusiasts for structured
programming will prefer to replace lines 2347
and this by “while (1) {” and “}” respectively

5.8 printn (2369)

This procedure calls itself recursively in order to
generate the required digits in the required order.
It might be possible to code this procedure more
efficiently but not more completely. (Anyway, in
view of the implementation of “putchar”, efficiency
is hardly a consideration here.)

Suppose n = A*b + B where A = ldiv(n,b) and
where B = lrem(n,b) satisfies 0 < B < b. Then in
order to display the value for n, we need to display
the value for A followed by the value for B.

The latter is easy for b = 8 or 10: it consists of
a single character. The former is easy if A = 0. It
is also easy if “printn” is called recursively. Since
A < n, the chain of recursive calls must terminate.

2375: Arithmetic values corresponding to digits
are conveniently converted to their corre-
sponding character representations by the ad-
dition of the character ‘0.

The procedures “ldiv’ and “Irem” treat their
first parameter as an unsigned integer (i.e. no sign
extension, when a 16 bit value is extended to a
32 bit value before the actual division operation).
They may be found beginning on lines 1392 and
1400 respectively.

5.9 putchar (2386)

This procedure transmits to the system console the
character which was passed as a parameter.

It illustrates in a small way the basic features of
i/o operations on the PDP11 computer.

2391: “SW” is defined on line 0166 as the value
“0177570”. This is the kernel address of a
read only processor register which stores the
setting of the console switch register.

The meaning of the statement is clear: get the
contents at location 0177570 and see if they
are zero. The problem is to express this in
“C”. The code

if (SW == 0)

would not have conveyed this meaning. Clearly
“SW?” is a pointer value which should be
dereferenced. The compiler might have been
changed to accept

if (SW-> ==0)

but as it stands, this is syntactically incor-
rect. By inventing a dummy structure, with
an element “integ” (see line 0175), the pro-

grammer has found a satisfactory solution to
his problem.
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Several other examples of this programming de-
vice will be found in this procedure and elsewhere.

In hardware terms, the system console termi-
nal interface consists of four 16 bit control regis-
ters which are given consecutive addresses on the
Unibus beginning at kernel address 0177560 (see
the declaration for “KL” on line 0165.) For a de-
scription of the formats and usage of these registers,
see Chapter Twenty-Four of the “PDP11 Peripher-
als Handbook”.

In software terms, this interface is the unnamed
structure which is defined beginning on line 2313,
with four elements which name the four control reg-
isters. It does not matter that the structure is un-
named because it is not necessary to allocate any
instances of it (the one we are interested in is essen-
tially predefined, at the address given by “KL”).

2393: While bit 7 of the transmitter status register
(“XST”) is off, keep doing nothing, because
the interface is not ready to accept another
character.

This is a classic case of “busy waiting” where
the processor is allowed to cycle uselessly through
a set of instructions until some externally defined
event occurs. Such waste of processing power can-
not normally be tolerated but this procedure is only
used in unusual situations.

2395: The need for this statement is tied up with
the statement on line 2405;

2397: Save the current contents of the transmitter
status register;

2398: Clear the transmitter status register prepara-
tory to sending the next character:

2399: With bit 7 of the control status register re-
set, move the next character to be transmit-
ted to the transmitter buffer register. This
initiates the next output operation;

2400: A “new line” character needs to be accom-
panied by a “carriage return” character and
this is accomplished by a recursive call on
“putchar”.

A couple of extra “delete” characters are
thrown in also to allow for any delays in com-
pleting the carriage return operation at the
terminal;

2405: This call on “putchar” with an argument
of zero effectively results in a re-execution of
lines 2391 to 2394.

(It is very hard to see why the programmer
chose to use a recursive call here in preference
to simply repeating lines 2393 and 2394, since
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both code efficiency and compactness not to
mention clarity seem to have suffered.);

2406: Restore the contents of the transmitter sta-
tus register. In particular if bit 6 was formerly
set to enable interrupts then this resets it.

5.10 panic (2419)

This procedure is called from a number of locations
in the operating system. (e.g. line 1605). When cir-
cumstances exist under which continued operation
of the system seems undesirable.

UNIX does not profess to be a “fault tolerant”
or “fail soft” system, and in many cases the call on
“panic” can be interpreted as a fairly unsophisti-
cated response to a straightforward problem.

However more complicated responses require
additional code, lots of it, and this is contrary to
the general UNIX philosophy of “keep it simple”.

2419: The reason for this statement is given in the
comment beginning at line 2323;

2420: “update” causes all the large block buffers
to be written out. See Chapter Twenty;

2421: “printf” is called with a format string and
one parameter, which was passed to “panic”;

2422: This “for” statement defines an infinite loop
in which the only action is a call on the as-
sembly language procedure “idle” (1284).

“idle” drops the processor priority to zero,
and performs a “wait”. This is a “do noth-
ing” instruction of indefinite duration. It ter-
minates when a hardware interrupt occurs.

An infinite set of calls on “idle” is better than
the execution of a “halt” instruction, since
any i/o activities which were under way can
be allowed to complete and the system clock
can keep ticking.

The only way for the operator to recover from
a “panic” is to reinitialise the system, (after
taking a core dump, if desired).

5.11 prdev (2433), deverror (2447)

These procedures provide warning messages when
errors are occurring in i/o operations. At this stage,
their only interest is as examples of the use of
“printf”.

5.12 Included Files

It will be noted that whereas the file “malloc.c”
contains no request to include other files, requests



to include four separate files are included at the
beginning of “prf.c”.

(The observant reader will note that these files
are presumed to reside one level higher in the file
hierarchy than “prf.c” itself.)

The statement on line 2304 is to be understood
as if it were replaced by the entire contents of the
file “param.h”. This then supplies definitions for
the identifiers “SW”, “KL.” and “integ” which occur
in “putchar”.

We noted earlier that declarations for “KL”,
“SW” and “integ” occurred on lines 0165, 0166
and 0175 respectively, but this would have been
meaningless, if the file “param.h” had not been “in-
cluded” in “prf.c”.

The files “buf-h” and “conf.h” have been in-

cluded to provide declarations for “d_major”, “d_minor”,

“b_dev” and “b_blkno”, which are used in “prdev”
and “deverror”.

The reason for the inclusion of the fourth file,
“seg.h”, is a little harder to find. In fact it is not
necessary as the code stands, and the author owes
his readers an apology. In editing the source code,
it seemed like a good idea to move the declaration
for “integ” from “seg.h” to “param.h”. Q.E.D.

Note that the variable “panicstr” (2328) is also
global but since it is not referenced outside “prf.c”,
its declaration has not been placed in any “.h” file.
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6 Getting Started

This chapter considers the sequence of events which
occur when UNIX is “rebooted” i.e. it is loaded and
initiated in an idle machine.

A study of the initialisation process is of interest
in itself, but more importantly, it allows a number
of important features of the system to be presented
in an orderly manner.

The operating system may have to be restarted
in the aftermath of a system crash. It will also have
to be restarted frequently for quite ordinary, oper-
ational reasons, e.g. after an overnight shutdown.
If we assume the latter case, then we can assume
that all the disk files are intact and that no special
circumstance needs to be recognised or dealt with.

In particular, we can assume there is a file in the
root directory called “/unix”, which is the object
code for the operating system.

This file began life as a set of source files such
as we are investigating. These were compiled and
linked together in the normal way to form a single
object program file, and stored in the root directory.

6.1 Operator Actions

Reinitialisation requires operator action at the pro-
cessor console. The operator must:

e stop the processor by setting the “enable/halt”
switch to “halt”;

e set the switch register with the address of the
hardware bootstrap loader program;

e depress and release the “load address” switch;
e move the “enable/halt” switch to “enable”;

e depress and release the “start” switch.

This activates the bootstrap program which is
permanently recorded in a ROM in the processor.

The bootstrap loader program loads a larger
loader program (from block #0 of the system disk),
which looks for and loads a file called “/unix” into
the low part of memory.

It then transfers control to the instruction loaded
at address zero.

Address zero is occupied by a branch instruc-
tion (line 0508), which branches to location 000040,
which contains a jump instruction (line 0522),
which jumps to the instruction labelled “start” in
the file “m40.s” (line 0612).

6.2 start (0612)

0613: The “enabled” bit of the memory manage-
ment status register, SRO, is tested. If this
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set, the processor will dwell forever in a two
instruction loop. This register will normally
be cleared when the operator activates the
“clear” button on the console before starting
the system.

A number of reasons have been suggested for
the necessity for this loop. The most likely is
that in the case of a double bus timeout error,
the processor will branch to location zero, and
in this situation it should not be allowed to
go further.

0615: “reset” clears and initialises all the periph-
eral device control and status registers

The system will now be running in kernel
mode with memory management disabled.

0619: KISAO and KISDO are the high core ad-
dresses of the first pair of kernel mode seg-
mentation registers. The first six kernel de-
scriptor registers are initialised to 077406,
which is the description of a full size, 4K word,
read /write segment.

The first six kernel address registers are ini-
tialised to 0, 0200, 0400, 0600, 01000 and
01200 respectively.

As a result the first six kernel segments are
initialised (without any reference to the ac-
tual size of UNIX) to point to the first six
4K word segments of physical memory. Thus
the “kernel to physical address” translation is
trivial for kernel addresses in the range 0 to
0137777,

0632: “.end” is a loader pseudo variable which de-
fines the extent of the program code and data
area. This value is rounded up to the next
multiple of 64 bytes and is stored in the ad-
dress register for the seventh segment (seg-
ment #6).

Note that the address of this register is stored
in “ka6”, so that the content of this register
is accessible as “*ka6”;

0634: The corresponding descriptor register is loaded
with a value which (since “USIZE” is equal to
16) is the description of a read/write segment
which is 16 x 32 = 512 words long.

The value 007406 is obtained by shifting the
octal value 017 eight places to the left and
then “or”ing in the value 6;

0641: The eighth segment is mapped into the high-
est 4K word segment of the physical address
space.

It should be noted that with memory manage-
ment disabled, the same translation is already



in force i.e. addresses in the highest 4K word
segment of the 32K program address space
are automatically mapped into the highest 4K
word segment of the physical address space.

We may note that from this point on, all the
kernel mode segmentation registers will remain un-
changed with the single exception of the seventh
kernel segmentation address register.

This register is explicitly manipulated by UNIX
to point to a variety of locations in physical mem-
ory. Each such location is the beginning of an area
512 words long, known as a “per process data area”.

The seventh kernel address register is now set
to point to the segment which will become the per
process data area for process #0.

0646: The stack pointer is set to point to the high-
est word of the per process data area;

0647: By incrementing the value of SRO from zero
to one, the “memory management enabled”
bit is conveniently set.

From this point, all program addresses are trans-
lated to physical addresses the memory management
hardware.

0649: “bss” refers to the second part of the pro-
gram data area, which is not initialised by
the loader (see “A.OUT(V)” in the PM). The
lower and upper limits of this area are defined
by the loader pseudo variables, “_edata” and
“_end” respectively;

0668: The processor status word (PS) is changed
to indicate that the “previous mode” was
“user mode”.

This prepares the way for the investigation
and initialisation of the areas of physical
memory which are not part of the kernel ad-
dress space. (This involves use of the spe-
cial instructions “mtpi” and “mfpi” (Move
To/From Previous Instruction space) together
with some manipulation of the user mode seg-
mentation registers.);

0669: A call is then made to the procedure “main”
(1550).

It will be seen later that “main” calls “sched”
which never terminates. The need for or use of
the last three instructions of “start” (lines 0670,
0671 and 0672) is therefore somewhat enigmatic.
The reason will come later. In the meantime you
might like to ponder “why?”. What do these lines
do anyway?

6.3 main (1550)

Upon entry to this procedure:

(a) the processor is running at priority zero, in ker-
nel mode and with the previous mode shown
as user mode;

(b) the kernel mode segmentation registers have
been set and the memory management unit
has been enabled;

(c) all the data areas used by the operating system
have been initialised;

(d) the stack pointer (SP or r6) points to a word
which contains a return address in “start”.

1559: The first action of “main” would appear to
be redundant, since “updlock” should have
already been set to zero as part of the initial-
isation performed by “start”;

1560: “” is initialised to the ordinal of the first
32 word block beyond the “per process data
area” for process #0;

1562: The first pair of user mode segmentation
registers are used to provide a “moving win-
dow” into higher areas of the physical mem-
ory.

At each position of the window an attempt is
made (using “fuibyte”) to read the first ac-
cessible word in the window. If this is not
successful, it is assumed that the end of the
physical memory has been reached. Other-
wise the next 32 word block is initialised to
zero (using “clearseg” (0676)) and added to
the list of available memory, and the window
is advanced by 32 words.

“fuibyte” and “clearseg” are both to be found
in “m40.s”, “fuibyte” will normally return a posi-
tive value in the range 0 to 255. However, in the
exceptional case where the memory location refer-
enced does not respond, the value —1 is returned.
The way this is brought about is a little obscure,
and will be explained later in Chapter Ten.)

1582: “maxmem” defines the maximum amount of
main memory which may be used by a user
program. This is the minimum of:

e the physically available memory (“maxmem”);
e an installation definable parameter (“MAXMEM”)

(0135);

e the ultimate limit imposed by the PDP11
architecture;
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1583: “swapmap” defines available space on the
swapping disk which may be used when user
programs are swapped out of main memory.
It is initialised to a single area, of size “nswap”,
starting at relative address “swplo”. Note
that “nswap” and “swplo” are initialised in
“conf.c” (lines 4697, 4698);

1589: The significance of this and the next four
lines will be discussed shortly;

1599: The design of UNIX assumes the existence of
a system clock which interrupts the processor
at line frequency (i.e 50 Hz or 60 Hz).

There are two possible clock types available:
a line frequency clock (KW11-L) which has
a control register on the Unibus at address
777546, or a programmable, real-time clock
(KW11-P) located at address 777540 (lines
1509, 1510).

UNIX does not presume which clock will be
present. It attempts to read the status word
for the line frequency clock first. If success-
ful, that clock is initialised and the other (if
present) remains unused. If the first attempt
is unsuccessful, then the other clock is tried.
If both attempts are unsuccessful, there is a
call on “panic” which effectively halts the sys-
tem with an error message to the operator.

Since the absence of a clock will be indicated
by a bus timeout error, it is convenient to make the
reference via “fuiword”, preceded by the setting of a
user mode segmentation register pair (1599, 1600).

1607: Either type of clock is initialised by the
statement

*lks = 0115;

As a consequence of this action, the clock
will interrupt the processor within the next
20 milliseconds. This interrupt may occur at
any time, but it will be convenient for this dis-
cussion to assume that no interrupt will occur
before initialisation is complete;

1613: “cinit” (8214) initialises the pool of character
buffers. See Chapter 23;

1614: “binit” (5055) initialises the pool of large
buffers. See Chapter 17;

1615: “iinit” (6922) initialises table entries for the
root device. See Chapter Twenty.

6.4 Processes

“process” is a term which has occurred more than
once already. A definition which will suit our pur-
poses reasonably well at present is simply “a pro-
gram in execution”.
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Details of the representation of processes in
UNIX will be discussed in the next chapter. For
now we just note that each process involves a “proc”
structure from the array called “proc” and a “per
process data area” which includes one copy of the

structure “u”.

6.5 Initialisation of proc[0]

The explicit initialisation of the structure “proc[0]”
is performed starting at line 1589. Ounly four ele-
ments are changed from the overall initial value of
Zero:

(a) “p-stat” is set to “SRUN” which implies that
process 0 is “ready to run”;

(b) “pflag” is set to show both “SLOAD” and
“SSYS”. The former implies that the process
is to be found in core (it has not been swapped
out onto the disk), and the second, that it
should never be swapped out;

(c) “psize” is set to “USIZE”;

p-addr” is set to the contents of the kerne
d) “p-addr” is set to th tents of the kernel
segmentation address register #6.

It will be seen that process #0 has acquired an
area of “USIZE” blocks (exactly the size of a “per
process data area”) which begins immediately after
the official end (“.end”) of the operating system
data area.

The ordinal number of the first block of this area
has been stored for future reference in “p_addr”.
This area, which was cleared to zero in “start”
(0661), contains a single copy of the user structure
called “u”.

On line 1593, the address of “proc[0]” is stored
in “u.u_procp”, i.e. the “proc” structure and the

“u” structure are mutually linked.

6.6 The story continues ...

1627: “newproc” (1826) will be discussed in detail
in the next chapter.

In brief this initialises a second “proc” struc-
ture viz. “proc[l1]”, and allocates a second
“per process data area” in core. This is a
copy of the “per process data area” for process
#0, exact in all but one respect: the value of
“u.u_procp” in the second area is “&proc[1]”.

We should note here that at line 1889, there
is a call on “savu” (0725) which saves the
current values of the environment and the
stack pointers in “u.u_rsav” before the copy
is made.



Also from line 1918 we can see that the value
returned by “newproc” will be zero, so that
the statements on lines 1628 to 1635 will not
be executed;

1637: A call is made to “sched” (1940) which, it
may be observed, contains an infinite loop, so
that it never returns!

6.7 sched (1940)

At this stage we are only interested in what happens
when “sched” is entered for the first time.

1958: “spl6” is an assembler routine (1292) which
sets the processor priority level to six. (Cf.
also “spl0”, “spld”, “spl5” and “spl7” in
“m40.s”).

When the processor is at level six, only devices
with priority seven can interrupt it. The clock
whose priority level is six is thus inhibited from in-
terrupting the processor between this point and the
subsequent call on “spl0” at line 1976.

1960: A search is made through “proc” whose sta-
tus is “SRUN” and which is not “loaded”.

(Processes #0 and 1 have status “SRUN” and
are loaded. All remaining 2193: processes, have a
status of zero, which is equivalent to “undefined”
or “NULL” ) .

1966: The search fails (“n” is still -1). The flag
“runout” is made non-zero, indicating that
there are no processes which are both ready
to run and “swapped out” onto disk;

1968: “sleep” is called (to wait for such an event)
with a priority “PSWP” (== -100) for when
it wakes up, which is in the category of “very
urgent”.

6.8 sleep (2066)

2070: “PS” is the address of the processor status
word. The processor status is stored in the
register “s” (0164, 0175);

2071: “rp” is set to the address of the entry in
the array “proc” of the current process (still
“proc[0]” at this stage!);

2072: “pri” is negative, so the “else” branch is
taken, setting the status of the current pro-
cess (0) to “SSLEEP”. The reason for “go-
ing to sleep” and the “awakening priority” are
noted.

2093: “swtch” is then called.

6.9 swtch (2178)

2184: “p” is a static variable (2180), which means
that its value is initialised to zero (1566)
and is preserved between calls. For the very
first call on “swtch”, “p” is set to point to
“proc[0]”;

2189: “savu” is called to save the stack pointer and
the environment pointer for the current pro-
cess in “u.u_rsav”;

2193: “retu” is called to reset the kernel address
register for segment #6 to the value passed
as an argument (this causes a change in the
current process!), and to reset the stack and
environment pointers to values appropriate to
the revised current process, whose execution
is about to be resumed.

The combination of successive calls on “savu”
and “retu” at this point constitutes a so-called
“coroutine jump” (Cf. “exchange jump” on the Cy-
ber or “Load PSW” on the /360 or “Move Stack”
on the B6700).

This time however the coroutine jump is from
process 0 to process 0 (not very interesting!).

2201: The set of processes is searched to find the
process whose state is “SRUN” and which is
loaded and for which “p_pri” is a maximum.

The search is successful and process #1 is
found. (N.B. The state of process #0 was
just changed from “SRUN” to “SSLEEP” in
“sleep” so it no longer satisfies the search cri-
terion);

2218: Since “p” is not “NULL”, the idle loop is
not entered;

2228: “retu” (0740) causes a coroutine jump to
process #1 which becomes the current pro-
cess.

What is process #1 ? It is a copy of process
#0, made at a previous stage of the latter’s
existence.

This call on “retu” was not preceded by a call
on “savu” because the necessary information has in
fact been saved already. (Where?)

2229: “sureg” is a routine 1738) which copies into
the user mode segmentation registers, the
values appropriate for the current process.
These have been stored earlier in the arrays
“u.u_uisa” and “u.u _uisd”.

The very first call on “sureg” copies zeroes and
serves no real purpose.
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2240: The “SSWAP” flag is not set, so that this
enigmatic (2239) section can be ignored for
now;

2247: Finally “swtch” returns with a value of “1”.
But where does the “return” return to? Not
to “sleep” !

The “return” follows values set by the stack
pointer and the environment pointer. These (just
before the return) have values equal to those in
force when the most recent “savu(u.u_rsav)” was
performed.

Now process #1, which is only just starting has
never performed a “savu”, but values were stored in
“u.u_rsav” before the copy of process #0 was made
by “newproc”, which had been called from “main”.

Thus in this case, the return from “swtch” is
made to “main”, with a value of one. (Look over
this again, to be sure you understand!)

6.10 main revisited

The story so far: process #0, having created a copy
of itself in the form of process #1, has gone to sleep.
As a result process #1 has become the current pro-
cess and has returned to “main ”"with a value of
one. Now read on ...

1627: The statements in “main” which are condi-
tional on “newproc” are now executed:

1628: “expand” (2268) finds a new, larger area
(from USIZE*32 to (USIZE+1) *32 words)
for process #1, and copies the original data
area into it.

In this case, the original user data area con-
sists only of a “per process data area”, with
zero length data and stack areas. The original
area is released;

1629: “estabur” is used to set the “prototype”
segmentation registers which are stored in
“u.u_uisa” and “u.u_uisd” for later use by
“sureg”. “estabur” calls “sureg” as its last
action.

The parameters for “estabur” are the sizes of
the text, data and stack areas plus an indica-
tor to decide whether the text and data areas
should be in separate address spaces. (Never
true on the PDP11/40.) The sizes are all in
units of 32 words;

1630: “copyout” (1252) is an assembler routine
which copies an array in kernel space of spec-
ified size into a region in user space. Here the
array “icode” is copied into an area starting
at location zero in user space;
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1635: The “return” is not special. From “main” it
goes to “start” (0670) where the three last in-
structions have the effect of causing execution
in user mode of the instruction at user mode
address zero. i.e. the execution of a copy of
the first instruction in “icode”. The instruc-
tions subsequently executed are copies also of
instructions in “icode”.

AT THIS POINT, THE INITTALISATION OF
THE SYSTEM IS COMPLETE.

Process #1 is running and to all intents and
purposes, is a normal process. Its initial form is
(almost) that which would come from compilation,
loading and execution of the simple, but non-trivial
“C” program:

char *init "/etc/init";
main ( ) {

execl (init, init, 0);
while (1);

}

The equivalent assembler program is

sys exec
init
initp
br
initp: init
0
init: </etc/init\0>

If the system call on “exec” fails (e.g. the file
“/etc/init” cannot be found) the process falls into a
tight loop, and there the processor will stay, except
when the occasional clock interrupt occurs.

A description of the functions performed by
“/etc/init” can be found in the section “INIT
(VIII)”? of the UPM.



7 Processes

The previous chapter traced the developments which
occur after “the operating system has been re-
booted”, and in so doing introduced a number of
significant features of the process concept. One of
the aims of this chapter is to go back and re-explore
some of the same ground more thoroughly.

There are a number of serious difficulties in pro-
viding a generally acceptable definition of “pro-
cess”. These are akin to the difficulties faced by
the philosopher who would answer “what is life?”
We will be in good company if we brush the more
subtle points lightly aside.

The definition for “process” already given, “a
program in execution”, does reasonably well in sug-
gesting what is intended. However it does not fit
the case of either process #0 throughout its life or
process #1 during its first moments. All other pro-
cesses in the system however are clearly associated
with the execution of some program file or other.

Processes can be introduced into discussions of
operating systems at two levels.

At the upper level, “process” is an important
organising concept for describing the activity of a
computer system as a whole. It is often expedi-
ent to view the latter as the combined activity of a
number of processes, each associated with a partic-
ular program such as the “shell”, or the “editor”. A
discussion of UNIX at this level is given in the sec-
ond half of Ritchie’s and Thompson’s paper, “The
UNIX Time-sharing System”.

At this level the processes themselves are con-
sidered to be the active entities in the system, while
the identities of the true active elements, the pro-
cessor and the peripheral devices, are submerged:
the processes are born, live and die; they exist
in varying numbers; they may acquire and release
resources; they may interact, cooperate, conflict,
share resources; etc.

At the lower level, “processes” are inactive enti-
ties which are acted on by active entities such as the
processor. By allowing the processor to switch fre-
quently from the execution of one process image to
another, the impression can be created that each of
the process images is developing continuously and
this leads to the upper level interpretation.

Our present, concern is with the low level inter-
pretation: with the structure of the process image,
with the details of execution and with the means
for switching the processor between processes.

The following observations may be made about
processes in the UNIX context:
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(a) the existence of a process is implied by the ex-
istence of a non-null structure in the “proc”
array, i.e. a “proc” structure for which the
element “p_stat” is non-null;

(b) for each process there is a “per process data
area” containing a copy of the “user” struc-
ture;

(c) the processor spends its entire life executing
one process or another (except when it is rest-
ing between instructions);

(d) it is possible for one process to create or de-
stroy another process;

(e) a process may acquire and possess resources of
various kinds.

7.1 The Process

Ritchie and Thompson in their paper define a “pro-
cess” as the execution of an “image”, where the
“image” is the current state of a pseudo-computer,
i.e. an abstract data structure, which may be rep-
resented in either main memory or on disk.

The process image involves two or three physi-
cally distinct areas of memory:

(1) the “proc” structure, which is contained
within the core resident “proc” array and is
accessible at all times;

(2) the data segment, which consists of the “per
process data area”, combined with a segment
containing the user program data, (possibly)
program text, and stack;

(3) the text segment, which is not always present,
consists of a segment containing only pure
program text i.e. re-entrant code and con-
stant data.

Many programs do not have a separate text seg-
ment. Where one is defined, a single copy will be
shared among all processes which are executions of
the same particular program.

7.2 The proc Structure (0358)

This structure, which is permanently resident in
main memory, contains fifteen elements, of which
eight are characters, six are integers, and one a
pointer to an integer. Each element represents in-
formation that must be accessible at any time, es-
pecially when the main part of the process image
has been swapped out to disk:

e “p_stat” may take one of seven values which
define seven mutually exclusive states. See
lines 0381 to 0387;

e “p_flag” is an amalgam of six one bit flags
which may be set independently. See lines
0391 to 0396;
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o “p_addr” is the address of the data segment:

— If the data segment is in main memory
this is a block number;

— otherwise, if the data segment has been
swapped out, this is a disk record num-
ber;

e “p_size” is the size of the data segment, mea-
sured in blocks;

e “p_pri” is the current process priority. This
may be recalculated from time to time as a
function of “p_nice”, “p_cpu” and “p_time”;

e “p_pid”, “p_ppid” are numbers which uniquely
identify a process and its parent;

e “psig”, “p_uid”, “p_ttyp” are involved with
external communication i.e. with messages
or “signals” from outside the process’s normal
domain;

e “p_wchan” identifies, for a “sleeping” pro-
cess (“pstat” equals either “SSLEEP” or
“SWAIT”), the reason for sleeping;

e “p_textp” is either null or a pointer to an en-
try in the “text” array (4306), which contains
vital statistics regarding the text segment.

7.3 The user Structure (0413)

One copy of the “user” structure is an essential in-
gredient of each “per process data area”. At any
one time there is exactly one copy of the “user”
structure which is accessible. This goes under the
name “u” and is always to be found at kernel ad-
dress 0140000 i.e. at the beginning of the seventh
page of the kernel address space.

The “user” structure has more elements than
can be conveniently or usefully introduced here.
The comment accompanying each declaration on
Sheet 04 succinctly suggests the function of each
element.

For the moment you should notice:

(a) “ursav”, “ugsav”’ , “ussav” which are two
word arrays used to store values for r5, r6;

(b) “u_procp” which gives the address of the cor-
responding “proc” structure in the “proc” ar-
ray;

(c) “u-uisa[l16]”, ”u_uisd[16]” which store proto-

types for the page address and description
registers;
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(d) “u_tsize”, “u.dsize”, “u_ssize” which are the
size of the text segment and two parameters
defining the size of the data segment, mea-
sured in 32 word blocks.

The remaining elements are concerned with:

e saving floating point registers (not for the
PDP11/40);

o user identification;

e parameters for input/output operations;
e file access control;

e system call parameters;

e accounting information.

7.4 The Per Process Data Area

The “per process data area” corresponds to the
valid part (lower part) of the seventh page of the
kernel address space. It is 1024 bytes long. The
lower 289 bytes are occupied by an instance of the
“user” structure, leaving 367 words to be used as a
kernel mode stack area. (Obviously there will be as
many kernel mode stacks as there are processes.)

While the processor is in kernel mode, the val-
ues of r5 and r6, the environment and stack point-
ers, should remain within the range 0140441 to
01437777. Transition beyond the upper limit would
be trapped as a segmentation violation, but the
lower limit is protected only by the integrity of the
software. (It may be noted that the hardware stack
limit option is not used by UNIX.)

7.5 The Segments

The data segment is allocated as one single area
of physical memory but consists of three distinct
parts:

(a) a “per process data area”;

(b) a data area for the user program. This may be
further divided into areas for program text,
initialised data and uninitialised data;

(c) a stack for the user program.

The size of (a) is always “USIZE” blocks. The
sizes of (b) and (c) are given in blocks by “u.u_dsize”
and “u.ussize”. (It may be noted in passing that
the latter two may change during the life of a pro-
cess.)

A separate text segment containing only pure
text is allocated as one single area of physical mem-
ory. The internal structure of the segment is not
important here.



7.6 Execution of an Image

The image currently being executed (and hence the
identity of the current process) is determined by the
setting of the seventh kernel segmentation address
register. If process #i is the current process, then
the register has the value “procli].p-addr”.

It is often desirable to distinguish between a pro-
cess being executed in kernel mode and the same
one being executed in user mode. We will use the
terms “kernel process #i” and “user process #i” to
denote “process #i executing in kernel mode” and
“process #i executing in user mode” respectively.

If we chose to associate processes with particular
execution stacks rather than with an entry in the
“proc” array, then we would consider kernel process
#i and user process #i to be separate processes,
rather than different aspects of a single process #i.

7.7 Kernel Mode Execution

The seventh kernel segmentation address register
must be set appropriately. None of the other kernel
segmentation registers is ever disturbed and so their
values are assumed. As was seen earlier, the first
six kernel pages are mapped to the first six pages of
physical memory, while the eighth is mapped into
the highest page of physical memory. The size of
the seventh segment is always the same.

In kernel mode the setting of the user mode seg-
mentation registers is in general irrelevant. How-
ever they are normally set correctly for the user
process.

The environment and stack pointers point into
the kernel stack area in the seventh page, above the
“user” structure.

7.8 User Mode Execution

Each activation of a user process is preceded and
succeeded by an activation of the corresponding
kernel process. Accordingly both the user mode and
kernel mode registers will be properly set whenever
a process image is being executed in user mode.

The environment and stack pointers point into
the user stack area. This begins as the upper part
of the eighth user page, but may be extended down-
wards, e.g. to occupy the whole of the eighth page
and part or all of the seventh page, etc.

Whereas the setting of the kernel segmentation
registers is fairly trivial, setting the user segmenta-
tion registers is much less so.

7.9 An Example

Consider a program on the PDP11/40 which uses
1.7 pages of text, 3.3 pages of data, and 0.7 pages
of stack area. (Our use of fractions in this example

is admittedly a little crude.) The set of virtual ad-
dresses would be divided as shown in the following
diagram:

888 s1 | Stack
888 s1 | area
888
7
7
7
666
666
666 d4
555 d3
555 d3
555 d3
444 d2 | Data
444 d2
444 d2 | area
333 d1
333 d1
333 d1
222
222 t2
222 t2 | Text
111 t1
111 t1 | area
111 t1

Virtual Address Space

Two whole pages in the virtual address space
must be allocated to the text segment, even though
the physical area required is only 1.7 pages.

222 t2
222 t2 | Text
111 t1
111 t1 | area
111 t1

Text Segment

The data and stack areas require the dedication
of four and one pages of virtual address space, and
3.3 and 0.7 pages of physical memory respectively.

The whole data segment requires four and one
eighth pages of physical memory. The extra eighth
is for the “per process data area” which corresponds
(from time to time) to the seventh kernel address

page.
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888 s1 | Stack
888 s1 | area

666 d4
555 d3
555 d3
555 d3
444 d2 | Data
444 d2
444 d2 | area
333 d1
333 d1
333 d1

ppda
Data Segment

Note the order of the components of the data seg-
ment, and that there is no embedded unused space.

The user mode segmentation need to be set to
reflect the values in the following table, where “t”,
“d” denote the block numbers of beginning of the
text and data segments respectively:

Page Address Size Comment

1 t+0 1.0 read only

2 t+128 0.7 read only

3 d+16 1.0

4 d+144 1.0

5 d+272 1.0

6 d+400 0.3

7 ? 0.0 not used

8 d+400 0.7 grows downward

Note the setting of the eighth address regis-
ter. The address prototypes stored in the array
“u.u_uisa” are obtained by setting “t” and “d” to
Z€ro.

7.10 Setting the Segmentation Reg-
isters

Prototypes for the user segmentation registers are
set up by “estabur” which is called when a program
is first launched into execution, and again when-
ever a significant change in memory allocation re-
quires it. The prototypes are stored in the arrays
“u.u_uisa”, “u.u_uisd”.

Whenever process #i is about to be reactivated,
the procedure “sureg” is called to copy the the pro-
totypes into the appropriate registers. The descrip-
tion registers are copied directly, but the address
registers must be adjusted to reflect the actual lo-
cation in physical memory of the area used.

7.11 estabur (1650)

1654: Various checks on consistency are performed,
to ensure that the requested sizes for the text,
data and stack are reasonable.
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Note that a non-zero value for “sep” im-
plies separate mappings for the text area (“i”
space) and the data area (“d” space). This is
never possible on the PDP11/40;

1664: “a” defines the address of a segment relative
to an arbitrary base of zero. “ap” and “dp”
point to the set of prototype segmentation ad-
dress and descriptor registers respectively.

The first eight of each of these sets are intended

to refer to “i” space, and

1667: “nt” measures the number of 32 word blocks
needed for the text segment. If “nt” is non-
zero, one or more pages must be allocated for
this purpose.

Where more than one page is allocated, all but
the last will consist of 128 blocks (4096 words), and
will be read only, and will have relative addresses
starting at zero and increasing successively by 128.

1672: If some fraction of a page of text is still to
be assigned, allocate the appropriate part of
the next page;

1677: if “i” and “d” spaces are being used sep-
arately, mark the segmentation registers for
the remaining “i” pages as null;

1682: “a” is reset because all remaining addresses
refer to the data area (not the text area) and
are relative to the beginning of this area. The
first “USIZE” blocks of this area are reserved
for the “per process data area”;

1703: The stack area is allocated from the top of
the address space towards the lower addresses
(“downwards”);

1711: If a partial page must be allocated for the
stack area, it is the high address art of the
page which is valid. (For text and data areas,
which grow “upwards”, it is the lower part of
a partial page which is valid.) This requires
an extra bit in the descriptor, hence “ED”
(“expansion downwards”);

1714: If separate “i” and “d” spaces are not used,
only the first eight of the sixteen prototype
register pairs will have been initialised by this
point. In this case, the second eight are copied
from the first eight.

7.12 sureg (1739)

This routine is called by “estabur” (1724), “swtch”
(2229) and “expand” (2295), to copy the prototype
segmentation registers into the actual hardware seg-
mentation registers.



1743: Get the base address for the data area from
the appropriate element of the “proc” array;

1744: The prototype address registers (of which
there are only eight for the PDP11/40) are
modified by the addition of “a” and stored in
the hardware segmentation address registers;

1752: Test if a separate text area has been allo-
cated, and if so, reset “a” to the relative ad-
dress of the text area to the data area. (Note
this value may be negative! Fortunately at
this point, addresses are in terms of 32 word
blocks.);

1754: The pattern of code now followed is similar
to the beginning of the routine, except ...

1762: a rather obscure piece of code adjusts the
setting of the address register for segments
which are not “writable” i.e. which presum-
ably are text segments.

The code in “estabur” and “sureg” shows ev-
idence of having been developed in several stages
and is not as elegant as could be desired.

7.13 newproc (1826)

It is now time to take a good look at the proce-
dure which creates new processes as (almost exact)
replicas of their creators.

1841: “mpid” is an integer which is stepped through
the values 0 to 32767. As each new process is
created, a new value for “mpid” is created to
provide a unique distinguishing number for
the process. Since the cycle of values may
eventually repeat, a check is made that the
number is not still in use; if so a new value is
tried;

1846: A search is made through the “proc” ar-
ray for a null “proc” structure (indicated by
“p_stat” having a null value);

1860: At this point, the address of the new entry
in the “proc” array is stored as both “p” and
“rpp”, and the address of “proc” entry for the
current process is stored both as “up” and
“rip” ;

1861: The attributes of the new process are stored
in the new “proc” entry. Many of these are
copied from the current process;

1876: The new process inherits the open files of
its parent. Increment the reference count for
each of these;

1879: If there is a separate text segment increment
the associated reference counts. Notice that
)

“rip”, “rpp” are used for temporary reference
here;

1883: Increment the reference count for the par-
ent’s current directory;

1889: Save the current values of the environment
and stack pointers in “u.u_rsav”. “savu” is an
assembler routine defined at line 0725;

1890: Restore the values of “rip” and “rpp”. Tem-
porarily change the value of “u.u_procp” from
the value appropriate to the current process
to the value appropriate to the new process;

1896: Try to find an area in main memory in which
to create the new data segment;

1902: If there is no suitable area in main memory,
the new copy will have to be made on disk.
The next section of code should be analysed
carefully because of the inconsistency intro-
duced at line 1891 i.e.
u.u_procp->p_addr != *ka6

1903: Mark the current process as “SIDL” to head
off temporarily any further attempt to swap
it out (i.e. initiated by “sched” (1940));

1904: Make the new “proc” entry consistent, i.e
set rpp->p-addr = *ka6;

1905: Save the current values of the environment
and stack pointers in “u.u_ssav”;

1906: Call “xswap” (4368) to copy the data seg-
ment into the disk swap area. Because the
second parameter is zero, the main memory
area will not be released;

1907: Mark the new process as “swapped out”;

1908: Return the current process to its normal
state;

1913: There was room in main memory, so store
the address of the new “proc” entry and copy
the data segment a block at a time;

1917: Restore the current process’ “per process
data area” to its previous state;

1918: Return with a value of zero.

Obviously “newproc” on its own is not suffi-
cient to produce an interesting and varied set of
processes. The procedure “exec” (3020) which is
discussed in Chapter Twelve provides the neces-
sary additional facility: the means for a process to
change its character, to be reincarnated.
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8 Process Management

Process management is concerned with the sharing
of the processor and the main memory amongst the
various processes, which can be seen as competitors
for these resources.

Decisions to reallocate resources are made from
time to time, either on the initiative of the process
which holds the resource, of for some other reason.

8.1 Process Switching

An active process may suspend itself i.e relinquish
the processor, by calling “swtch” (2178) which calls
“retu” (0740). This may be done for example if a
process has reached a point beyond which it can-
not proceed immediately. The process calls “sleep”
(2066) which calls “swtch”.

Alternatively a kernel process which is ready to
revert to user mode will test the variable “runrun”
and if this is non-zero, implying that a process with
a higher precedence is ready to run, the kernel pro-
cess will call “swtch”.

“swtch” searches the “proc” table, for entries for
which “p_stat” equals “SRUN” and the “SLOAD”
bit is set in “p_flag”. From these it selects the pro-
cess for which the value of “p_pri” is a minimum,
and transfers control to it.

Values for “p_pri” are recalculated for each pro-
cess from time to time by use of the procedure “set-
pri” (2156). Obviously the algorithm used by “set-
pri” has a significant influence. A process which
has called “sleep” and suspended itself may be re-
turned to the “ready to run” state by another pro-
cess. This often occurs during the handling of inter-
rupts when the process handling the interrupt calls
“setrun” (2134) either directly or indirectly via a
call on “wakeup” (2113).

8.2 Interrupts

It should be noted that a hardware interrupt (see
Chapter Nine) does not directly cause a call on
“swtch” or its equivalent. A hardware interrupt
will cause a user process to revert to a kernel pro-
cess, which as just noted, may call “swtch” as an
alternative to reverting to user mode after the in-
terrupt handling is complete.

If a kernel process is interrupted, then after the
interrupt has been handled, the kernel process re-
sumes where it had left off regardless. This point
is important for understanding how UNIX avoids
many of the pitfalls associated with “critical sec-
tions” of code, which are discussed at the end of
this chapter.
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8.3 Program Swapping

In general there will be insufficient main memory
for all the process images at once, and the data
segments for some of these will have to be “swapped
out” i.e. written to disk in a special area designated
as the swap area.

While on disk the process images are relatively
inaccessible and certainly unexecutable. The set of
process images in main memory must therefore be
changed regularly by swapping images in and out.
Most decisions regarding swapping are made by the
procedure “sched” (1940) which is considered in de-
tail in Chapter Fourteen.

“sched” is executed by process #0, which af-
ter completing its initial tasks, spends its time in a
double role: openly as the “scheduler” i.e. a nor-
mal kernel process; and surreptitiously as the inter-
mediate process of “swtch” (discussed in Chapter
Seven). Since the procedure “sched” never termi-
nates, kernel process #0 never completes its task,
and so the question of a user process #0 does not
arise.

8.4 Jobs

There is no concept of “job” in UNIX, at least in
the sense in which this term is understood in more
conventional, batch processing oriented systems.

Any process may “fork” a new copy of itself at
any time, essentially without delay, and hence cre-
ate the equivalent of a new job. Hence job schedul-
ing, job classes, etc. are non-events here.

8.5 Assembler Procedures

The next three procedures are written in assem-
bler and run with the processor priority level set to
seven. These procedures do not observe the normal
procedure entry conventions so that r5 and r6, the
environment and stack pointers, are not disturbed
during procedure entry and exit.

As has already been noted, “savu” and “retu”
can combine to produce the effect of a coroutine
jump. The third procedure, “aretu,” when followed
by a “return” statement produces the effect of a
non-local “goto”.

8.6 savu (0725)

This procedure is called by “newproc” (1889, 1905),
“swtch” (2189, 2281), “expand” (2284), “trapl”
(2846) and “xswap” (4476,4477).

The values of r5 and r6 are stored in the array
whose address is passed as a parameter.



8.7 retu (0740)

This procedure is called by “swtch” (2193, 2228)
and “expand” (2294).

It resets the seventh kernel segmentation ad-
dress register, and then resets r6 and r5 from the
newly accessible copy of “u.u_rsav” (which it may
be noted, is at the beginning of “u”).

8.8 aretu (0734)

This procedure is called by “sleep” (2106) and
“swtch” (2242).

It reloads r6 and r5 from the address passed as
a parameter.

8.9 swtch (2178)

“swtch” is called by “trap” (0770, 0791), “sleep”
(2084, 2093), “expand” (2287), “exit” (3256), “stop”
(4027) and “xalloc” (4480).

This procedure is unique in that its execution is
in three phases which in general involve three sep-
arate kernel processes. The first and third of these
processes will be called the “retiring” and the “aris-
ing” processes respectively. Process #0 is always
the intermediate process; it may be the “retiring”
or the “arising” process as well.

Note that the only variables used by “swtch” are
either registers, or global or static (stored globally).

2184: The static structure pointer, “p”, defines
a starting point for searching through the
“proc” array to locate the next process to
activate. Its use reduces the bias shown to
processes entered early in the “proc” array.
If “p” is null, set its value to the beginning
of the “proc” array. This should only occur
upon the very first call on “swtch”;

2189: A call on “savu” (0725) saves the current
values of the environment and stack pointers
(r5 and 16);

2193: “retu” (0740) resets r5 and r6, and, most
importantly, resets the kernel address register
6 to address the “scheduler’s” data segment;

2195: Phase Two begins:

The code from this line to line 2224 is only
ever executed by kernel process #0. There
are two nested loops, from which there is no
exit until a runnable process can be found.

At slack periods, the processor spends most
of its time executing line 2220. It is only dis-
turbed thence by an interrupt (e.g. from the
clock);

2196: The flag “runrun” is reset. (It is used to
indicate that a higher priority process than
the current process is ready to run. “swtch”
is about to look for the highest priority pro-
cess.);

2224: The priority of the “arising” process is noted
in “curpri” (a global variable) for future ref-
erence and comparison;

2228: Another call on “retu” resets r, r6 and the
seventh kernel address register to values ap-
propriate for the “arising” process;

2229: Phase Three begins:

“sureg” (1739) resets the user mode hardware
segmentation registers using the stored proto-
types for the arising process;

2230: The comment which begins here is not en-
couraging. We will return to this point again
towards the end of this chapter;

2247: TIf you check, you will find that none of the
procedures which call “swtch” directly exam-
ines the value returned here.

Only the procedures which call “newproc”
which are interested in this value, because of
the way the child process is first activated!

8.10 setpri (2156)

2161: Process priorities are calculated according to
the formula

priority = min(127,

(time used + PUSER, + p_nice))

where

(1) time used = accumulated central proces-
sor time (usually since the process was
last swapped in), measured in clock ticks
divided by 16 i.e. thirds of a second.
(More on this later when we discuss the
clock interrupt.);

(2) PUSER == 100;

(3) “p-nice” is a parameter used to bias the
process priority. It is normally positive
and hence reduces the process’s effective
precedence.

Note the somewhat confusing convention in
UNIX that the lower the priority, the higher the
precedence. Thus a priority of —10 beats a priority
of 100 every time.
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2165: Set the rescheduling flag if the process,
whose priority has just been recalculated, has
less precedence than the current process.

The sense of the test on line 2165 is surprising,
especially when it is compared with line 2141. We
leave it to the reader to satisfy himself that this is
not an error. (Hint: look at the parameters for the
calls on “setpri”.)

8.11 sleep (2066)

This procedure is called (from nearly 30 different
places in the code) when a kernel process chooses
to suspend itself. There are two parameters:

e the reason for sleeping;

e a priority with which the process will run after
being awakened.

If this priority is negative the process cannot be
aroused from its sleep by the arrival of a “signal”.
“signals” are discussed in Chapter Thirteen.

2070: The current processor status is saved to pre-
serve the incoming processor priority and pre-
vious mode information;

2072: If the priority is non-negative, a test is made
for “waiting signals”;

2075: A small critical section begins here, wherein
the process status is changed and the param-
eters are stored in generally accessible loca-
tions (viz. within the array “proc”).

This code is critical because the same in-
formation fields may be interrogated and
changed by “wakeup” (2113) which is fre-
quently called by interrupt handlers;

2080: When “runin” is non-zero, the scheduler
(process #0) is waiting to swap another pro-
cess into main memory;

2084: The call on “swtch” represents a delay of
unknown extent during which a relevant ex-
ternal event may have occurred. Hence the
second test on “issig” (2085) is not irrelevant;

2087: For negative priority “sleeps”, where the
process typically waits for freeing of system
table space, the occurrence of a “signal” is
not allowed to deflect the course of the activ-
ity.
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8.12 wakeup (2113)

This procedure complements “sleep”. It simply
searches the set of all processes, looking for any
processes which are “sleeping” for a specified reason
(given as the parameter “chan”), and reactivating
these individually by a call on “setrun”.

8.13 setrun (2134)

2140: The process status is set to “SRUN”. The
process will now be considered by “swtch”
and “sched” as a candidate for execution
again;

2141: If the aroused process is more important
(lower priority!) than the current process, the
rescheduling flag, “runrun” is set for later ref-
erence;

2143: If “sched” is sleeping, waiting for a process
to “swap in”, and if the newly aroused process
is on disk, wake up “sched”.

Since it turns out that “sched” is the only
procedure which calls sleep with “chan” equal to
“&runout”, line 2145 could be replaced by the re-
cursive call

setrun(&proc[0]);
or better still, by just

rp = &proc[0];
goto sr;

where “sr” is a label to be inserted at the beginning
of line 2139.

8.14 expand (2268)

The comment at the beginning of this procedure
(2251) says most of what needs to be said about
the procedure, except for the question of “swapping
out” when not enough core is available.

Note that “expand” takes no particular notice
of the contents of the user data area or stack area.

2277: If the expansion is actually a contraction,
then trim off the excess from the high address
end;

2281: “savu” stores the values of r5 and r6 in
“u.u_rsav”’;

2283: If sufficient main memory is not available ...

2284: The environment pointer and stack pointer
are recorded again in “u.ussav”’. But note
that since no new procedures have been en-
tered, and since there has been no cumula-
tive stack growth, the values recorded are the
same as at line 2281;



2285: “xswap” (4368) copies the core image for the
process designated by its first parameter to
disk.

Since the second parameter is non-zero the
main memory area occupied by the data seg-
ment is returned to the list of available space.

However the computation continues using the
same area in main memory until the next call
on “retu” (2193) in “swtch”.

Note also that the call on “savu” at line 2189
in “swtch” stores new values in “u.ursav” after
the disk image has been made (and therefore serves
no useful purpose since the core image has already
been officially “abandoned”);

2286: The “SSWAP” flag is set in the process’s
proc array element. (This is not swapped out,
so the effect is not lost);

2287: “swtch” is called, and the process, still run-
ning in its old area suspends itself. Since
the call on “xswap” will have resulted in the
“SLOAD” flag being switched off, there is no
way that “swtch” will choose the process for
immediate reactivation.

Only after the disk image has been copied back
into core again can the process be activated again.
The “return” executed by “swtch” is a return to
the procedure which called “expand”.

8.15 swtch revisited

What happens to the process when it is reactivated
i.e. it becomes the “arising” process in “swtch”?

2228: The stack and environment pointers are re-
stored from “u.u_rsav” (Note that a pointer
to “u” is also a pointer to “u.u_rsav” (0415)
but ...

2240: If the core image was swapped out e.g. by
“expand” ...

2242: No reliance is placed on the values of the
stack and environment pointers, and they are
reset

The question is if the values stored in “u.u_ssav”
at line 2284 are the same as values stored in
“u.u_rsav” at line 2281, how did they get to be dif-
ferent?

Presumably this is what “you are not expected
to understand” (line 2238) ... clearly “xswap”
should be investigated ... the trail finally ends at
Chapter Fifteen ... in the meantime you may wish
to investigate for yourself so that you may join the
“2238” club that much sooner.

8.16 Critical Sections

If two or more processes operate on the same set of
data, then the combined output of the set of pro-
cesses may depend on the relative synchronisation
of the various processes.

This is usually considered to be highly unde-
sirable and to be avoided at all costs. The solu-
tion is usually to define “critical sections” (it is the
programmer’s responsibility to recognise these) in
the code which is executed by each process. The
programmer must then ensure that at any time no
more than process is executing a section of code
which is critical with respect to a partlcular set of
data.

In UNIX user processes do not share data and
so do not conflict in this way. Kernel processes
however have shared access to various system data
and can conflict.

In UNIX an interrupt does not cause a change
in process as a direct side effect. Only where kernel
processes may suspend themselves in the middle of
a critical section by an explicit call on “sleep”, does
an explicit lock variable which may be observed by
a group of processes) need to be introduced. Even
then the actions of testing and setting the locks do
not usually have to be made inseparable.

Some critical sections of code are executed by
interrupt handlers. To protect other sections of
code whose outcome may be affected by the han-
dling of certain interrupts, the processor priority is
raised temporarily high enough before the critical
section is entered to delay such interrupts until it is
safe, when the processor priority is reduced again.
There are of course a number of conventions which
interrupt handling code should observe, as will be
discussed later in Chapter Nine.

In passing it may be noted that the strategy
adopted by UNIX works only for a single proces-
sor system and would be totally inappropriate in a
multiprocessor system.
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Section Two

Section Two is concerned with traps, hardware inter-
rupts and software interrupts.

Traps and hardware interrupts introduce sudden
switches into the CPU’s normal instruction execution
sequence. This provides a mechanism for handling
special conditions which occur outside the CPU’s im-
mediate control.

Use is made of this facility as part of another
mechanism called the “system call’, whereby a user
program may execute a “trap” instruction to cause a
trap deliberately and so obtain the operating system'’s
attention and assistance.

The software interrupt (or “signal”) is a mecha-
nism for communication between processes, particu-
larly when there is “bad news”.

9 Hardware Interrupts and Traps

In the PDP11 computer, as in many other com-
puters, there is an “interrupt” mechanism, which
allows the controllers of peripheral devices (which
are devices external to the CPU) to interrupt the
CPU at appropriate times, with requests for oper-
ating system service.

The same mechanism has been usefully and con-
veniently applied to “traps” which are events inter-
nal to the CPU, which relate to hardware and soft-
ware errors, and to requests for service from user
programs.

9.1 Hardware Interrupts

The effect of an interrupt is to divert the CPU from
whatever it was doing and to redirect it to execute
another program.

During a hardware interrupt:

e The CPU saves the current processor status
word (PS) and the current program count
(PC) in its internal registers;

e the PC and PS are then reloaded from two
consecutive words located in the low area of
main memory. The address of the first of
these two words is known as the “vector lo-
cation” of the interrupt;

e finally the original PC and PS values are
stored into the newly current stack. (Whether
this is the kernel or user stack depends on the
new value of the PS.)

Different peripheral devices may have different
vector locations. The actual vector location for a
particular device is determined by hard wiring, and
can only be changed with difficulty. Moreover there
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are well entrenched conventions for choosing vector
locations for the various devices.

Thus after the interrupt has occurred, because
the PC has been reloaded, the source of instruc-
tions executed by the CPU has been changed. The
new source should be a procedure associated with
the peripheral device controller which caused the
interrupt.

Also since the PS has also been changed, the
processor mode may have changed. In UNIX, the
initial mode may be either “user” or “kernel”, but
after the interrupt, the mode is always “kernel”.
Recall also that a change in mode implies:

(a) a change in memory mappings. (Note that to
avoid any confusion, vector locations are al-
ways interpreted as kernel mode addresses.);

(b) a change in stack pointers. (Recall that the
stack pointer, SP or r6, is the only special reg-
ister which is replicated for each mode. This
implies that after a mode change, the stack
pointer value will have changed even though
it has not been reloaded!)

9.2 The Interrupt Vector

For our sample system, the representative periph-
eral devices chosen are listed in Table 9.1, along
with their conventional hardware defined vector lo-
cations and priorities.

vector peripheral interrupt process
location device priority  priority
060 teletype input 4 4
064 teletype output 4 4
070 paper tape input 4 4
074 paper tape output 4 4
100 line clock 6 6
104 programmable 6 6
clock
200 line printer 4 4
220 RK disk drive 5 5

Table 9.1 Interrupt Vector Locations and
Priorities

9.3 Interrupt Handlers

Within this selection of UNIX source code, there are
seven procedures known as “interrupt handlers”,
i.e. which are executed as the result of, and only as
the result of, interrupts:

clock (3725) pcrint (8719)
rkintr (5451) pcpint (8739)
klxint (8070) 1lpint (8976)
klrint (8078)



“clock” will be examined in detail in Chapter 11.
The others are discussed with the code for their
associated devices.

9.4 Priorities

An interrupt does not necessarily occur immedi-
ately the peripheral device controller requests it,
but only when the CPU is ready to accept it. It
is usually desirable that a request for a low prior-
ity service should not be allowed to interrupt an
activity with a higher priority.

Bits 7 to 5 of the PS determine the processor pri-
ority at one of eight levels (labelled zero to seven).
Each interrupt also has an associated priority level
determined by hardware wiring. An interrupt will
be inhibited as long as the processor priority is
greater than or equal to the interrupt priority.

After the interrupt the processor priority will be
determined from the PS stored in the vector loca-
tion and this does not have to be the same as the
interrupt priority. Whereas the interrupt priority is
determined by hardware, it is possible for the op-
erating system to change the contents of the vector
location at any time.

As a matter of curiosity, it may be noted that
the PDP11 hardware restricts the possible interrupt
priorities to 4, 5, 6 and 7 i.e. levels 1, 2 and 3 are
not supported by the Unibus.

9.5 Interrupt Priorities

In UNIX, interrupt handling routines are initiated
at the same priority as the interrupt priority.

This means that during the handling of the in-
terrupt, a second interrupt from a device of the
same priority class will be delayed until the pro-
cessor priority is reduced, either by the execution
of one of the “spl” procedures, which are intended
for just this purpose (see lines 1293 to 1315), or
by reloading the processor status word e.g. upon
returning from the interrupt.

During interrupt handling, the processor prior-
ity may be raised temporarily to protect the in-
tegrity of certain operations. For instance, char-
acter oriented devices such as the paper tape
reader /punch or the line printer interrupt at level
four. Their interrupt handlers call “getc” (0930)
or “putc” (0967), which raise the processor priority
temporarily to level five, while the character buffer
queues are manipulated.

The interrupt handler for the console teletype
makes use of a “timeout” facility. This involves a
queue which is also manipulated by the clock in-
terrupt handler, which runs at level six. To pre-
vent possible interference, the “timeout” procedure

(3835) runs at level seven (the highest possible
level).

Usually it does not make sense to run an inter-
rupt handler at a processor priority lower than the
interrupt priority, for this would then risk a sec-
ond interrupt of the same type, even from the same
device, before completion of the processing of the
first interrupt. This likely to be at best inconve-
nient and at worst disastrous. However the clock
interrupt handler, which once per second has a lot
of extra work to do, does exactly this.

9.6 Rules for Interrupt Handlers

As discussed above, interrupt handlers need to be
careful about the manipulation of the processor pri-
ority to avoid allowing other interrupts to happen
“too soon”. Likewise care needs to be taken that
the other interrupts are not delayed excessively, lest
the performance of the whole system be degraded.
It is important to note that when an interrupt oc-
curs, the process which is currently active will very
likely not be the process which is interested in the
occurrence. Consider the following scenario:

User process #m is active and initiates an i/o
operation. It executes a trap instruction and trans-
fers to kernel mode. Kernel process #m initiates
the required operation and then calls “sleep” to sus-
pend itself to await completion of the operation ...

Some time later, when some other process, user
process #n say, is active, the operation is completed
and an interrupt occurs. Process #n reverts to ker-
nel mode, and kernel process #n deals with the
interrupt, even though it may have no interest in
or prior knowledge of the operation.

Usually kernel process #n will include waking
process #m as part of its activity. This will not
always be the case though, e.g. where an error has
occurred and the operation is retried.

Clearly, the interrupt handler for a peripheral
device should not made references to the current
“u” structure for this is not likely to be the appro-
priate “u” structure. (The appropriate “u” struc-
ture could quite possibly be inaccessible, if it has
been temporarily swapped out to the disk.)

Likewise the interrupt handler should not call
“sleep” because the process thus suspended will
most likely be some innocent process.

9.7 Traps

“Traps” are like “interrupts” in that they are events
which are handled by the same hardware mecha-
nism, and hence by similar software mechanisms.
“Traps” are unlike “interrupts” in that they oc-
cur as the result of events internal to the CPU,
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rather than externally. (In other systems the ter-
minology “internal interrupt” and “external inter-
rupt” is used to draw this distinction more force-
fully.) Traps may occur unexpectedly as the result
of hardware or power failures, or predictably and
reproducibly, e.g. as the result of executing an ille-
gal instruction or a “trap” instruction.

“Traps” are always recognised by the CPU im-
mediately. They cannot be delayed in the way low
priority interrupts may be. If you like, “traps” have
an “interrupt priority” of eight.

“Trap” instructions may be deliberately in-
serted in user mode programs to catch the attention
of the operating system with a request to perform
a specified service. This mechanism is used as part
of the facility known as “system calls”.

Like interrupts, traps result in the reloading of
the PC and PS from a vector location, and the sav-
ing of the old values of the PC and PS in the cur-
rent stack. Table 9.2 lists the vector locations for
the various “trap” types.

vector trap type process
location priority
004 bus timeout 7
010 illegal instruction 7
014 bpt-trace 7
020 iot 7
024 power failure 7
030 emulator trap instruction 7
034 trap instruction 7
114 11/10 parity 7
240 programmed interrupt 7
244 floating point error 7
250 segmentation violation 7

Table 9.2 Trap Vector Locations and
Priorities

The contents of Tables 9.1 and 9.2 should be
compared with the file “low.s” on Sheet 05. As
noted earlier, this file is generated at each installa-
tion (along with the file “conf.c” (sheet 46)), as the
product of the utility program “mkconf”, so as to
reflect the actual set of peripherals installed.

9.8 Assembly Language ‘trap’

From “low.s” it appears that traps and interrupts
are handled separately by the software. However
closer examination reveals that “call” and “trap”
are different entry points to a single code sequence
in the file “m40.s” (see lines 0755, 0776). This se-
quence is examined in detail in the next chapter.
During the execution of this sequence, a call is
made on a “C” language procedure to carry out fur-
ther specific processing. In the case of an interrupt,
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the “C” procedure is the interrupt handler specific
to the particular device controller.

In the case of a trap, the “C” procedure is an-
other procedure called “trap” (yes, the word “trap”
is definitely overworked!), which in the case pro-
cess of a system error will most likely call priority
“panic” and in the case of a “system call”, will in-
voke (indirectly via “trapl”(2841)) the appropriate
system call procedure.

9.9 Return

Upon completion of the handling of an interrupt or
trap the code follows a common path ending in an
“rtt” instruction (0805). This reloads both the PC
and PS from the current stack, i.e. the kernel stack,
in order to restore the processor environment that
existed before the interrupt or trap.



10 The Assembler “Trap” Rou-
tine

The principal purpose of this chapter is to exam-
ine the assembly language code in “m40.s” which is
involved in the handling of interrupts and traps.

This code is found between lines 0750 and 0805,
and has two entry points, “trap” (0755) and “call”
(0766). There are several different and relevant
paths through this code and we shall trace some
examples of these.

10.1 Sources of Traps and Interrupts

The discussion in Section One introduced three
places where the occurrence of a trap or interrupt
was expected:

(a) “main” (1564) calls “fuibyte” repeatedly until
a negative value is returned. This will occur
after a “bus timeout error” has been encoun-
tered with a subsequent trap to vector loca-
tion 4 (line 0512);

(b) The clock has been set running and will gener-
ate an interrupt every clock tick i.e. 16.7 or
20 milliseconds;

(c) Process #1 is about to execute a “trap” in-
struction as part of the system call on “exec”.

10.2 fuibyte (0814), fuiword (0844)

“main” uses both “fuibyte” and “fuiword”. Since
the former is more complicated in a non-essential
way, we leave it to the reader, and concentrate on
the latter.

“fuiword” is called (1602) when the system is
running in kernel mode with one argument which
is an address in user address space. The function of
the routine is to fetch the value of the correspond-
ing word and to return it as a result (left in r0).
However if an error occurs, the value —1 is to be
returned.

Note that with “fuiword”, there is an ambigu-
ity which does not occur with “fuibyte”, namely
a returned value of —1 may not necessarily be an
error indication but the actual value in the user
space. Convince yourself that for the way it is used
in “main”, this does not matter.

Also the code does not distinguish between a
“bus timeout error” and a “segmentation error”.

The routine proceeds as follows:

0846: The argument is moved to rl;
0848: “gword” is called;
0852: The current PS is stored on the stack;

0853: The priority level is raised to 7 (to disable
interrupts);

0854: The contents of the location nofault (1466)
are saved in the stack;

0855: “nofault” is loaded with address of the rou-
tine “err”;

0856: An “mfpi” instruction is used to fetch the
word from user space.

If nothing goes wrong this value will left on
the kernel stack.

0857: The value is transferred from the stack to
r0;

0876: The previous values of “nofault” and PS are
restored;

Now suppose something does go wrong
with the “mfpi” instruction, and a bus time-out
does occur.

0856: The “mfpi” instruction will be aborted. PC
will point to the next instruction (0857) and
a trap via vector location 4 will occur;

0512: The new PC will have the value of “trap”.
The new PS will indicate:

present mode = kernel mode
previous mode = kernel mode

priority = T;

0756: The next instruction executed is the first in-
struction of “trap”. This saves the proces-
sor status word two words beyond the current
“top of stack”. (This is not relevant here.);

0757: “nofault” contains the address of “err” and
is non-zero;

0765: Moving 1 to SRO reinitialises the memory
management unit;

0766: The contents of “nofault” are moved on
top of the stack, overwriting the previous
contents, which was the return address in
“gword”;

0767: The “rtt” returns, not to “gword” but to the
first word of “err”;

0880: “err” restores “nofault” and PS, skips the
return to “fuiword”, places —1 in r0, and re-
turns directly to the calling routine.
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10.3 Interrupts

Suppose the clock has interrupted the processor.

Both clock vector locations, 100 and 104, have
the same information. PC is set to the address of
the location labelled “kwlp” (0568) and PS is set to
show:

present mode = kernel mode

previous mode = kernel or user mode

priority = 6
Note. The PS will contain the true previous mode,
regardless of the value picked up from the vector
location.

0570: The vector location contains a new PC value
which is the address of the statement labelled
“kwlp”. This instruction is a subroutine call
on “call” via r0.

After the execution of this instruction, r0 is
left with the address of the code word after
the instruction which contains “_clock”, i.e.
rQ contains the address of the address
of the “clock” routine in the file “clock.c”
(3725).

10.4 call (0776)
0777: Copy PS onto the stack;

0779: Copy rl onto the stack;

0780: Copy the stack pointer for the previous ad-
dress space onto the stack. (This is only sig-
nificant if the previous mode was user mode).

This represents a special case of the “mfpi”
instruction. See the “PDP11 Processor Hand-
book”, page 6-20;

781: Copy the copy of PS onto the stack and mask
out all but the lower five bits. The resulting
value designates the cause of the interrupt (or
trap). The original value of the PS had to be
captured quickly;

0783: Test if the previous mode is kernel or user.

If the previous mode is kernel mode the
branch is taken (0784). PS is changed to show
the previous mode as user mode (0798);

0799: The specialised interrupt handling routine
pointed to by r0 is entered. (In this case it
is the routine “clock”, which is discussed in
detail in the next chapter.)

0800: When the “clock” routine (or some other in-
terrupt handler) returns, the top two words of
the stack are deleted. These are the masked
copy of the PS and the copy of the stack
pointer;
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0802: rl is restored from the stack;
0803: Delete the copy of PS from the stack;
0804: Restore the value of r0 from the stack;

0805: Finally the “rtt” instruction returns to the
“kernel” mode routine that was interrupted;

If the previous mode was user mode it is
not certain that the interrupted routine will
be resumed immediately;

0788: After the specialised interrupt routine (in
this case “clock”) returns, a check (“runrun
> 0”) is made to see if any process of higher
priority than the current process is ready to
run. If the decision is to allow the current
process to continue, then it is important that
it be not interrupted as it restores its registers
prior to the “return from interrupt” instruc-
tion. Hence before the test, the processor pri-
ority is raised to seven (line 0787), thus ensur-
ing that no more interrupts occur until user
mode is resumed. (Another interrupt may oc-
cur immediately thereafter, however.)

If “runrun > 0”7, then another, higher priority,
process is waiting. The processor priority is reset
to 0, allowing any pending interrupt to be taken.
A call is then made to “swtch” (2178), to allow
the higher priority process to proceed. When the
process returns from “swtch”, the program loops
back to repeat the test.

The above discussion obviously extends to all
interrupts. The only part which relates specifically
to the clock interrupt is the call on the specialised
routine “clock”.

10.5 User Program Traps

The “system call” mechanism which enables user
mode programs to call on the operating system for
assistance, involves the execution by the user mode
program of one of 256 versions of the “trap” in-
struction. (The “version” is the value of the low
order byte of the instruction word.)

0518: Execution of the trap instruction in a user
mode program causes a trap to occur to vector
location 34 which causes the PC to be loaded
with the value of the label “trap” (lines 0512,
0755). A new PS is set which indicates

present mode = kernel mode
previous mode = user mode
priority = 7

0756: The next instruction executed is the first in-
struction of “trap”. This saves the processor



status word in the stack two words beyond
the current “top of stack”.

It is important to save the PS as soon as possi-
ble, before it can be changed, since it contains
information defining the type of trap that oc-
curred. The somewhat unconventional desti-
nation of the “move” is to provide compati-
bility with the handling of interrupts, so that
the same code can be used further on;

0757: “nofault” will be zero so the branch is not
taken;

0759: The memory management status registers
are stored just in case they will be needed,
and the memory management unit is reini-
tialised;

0762: A subroutine entry is made to “call” using
r0. (This neatly stores the old value of r0
in the stack, but not a return address. The
new value is the address of the address of the
routine to be entered next (in this case the
“trap” routine in the file “trap.c” (2693));

0772: The stack pointer is adjusted to point to the
location which already contains the copy of
PS;

0773: The CPU priority is set to zero;

From here the same path as for an in-
terrupt is followed.

10.6 The Kernel Stack

The state of the kernel stack at the time that the
“trap” procedure (“C” version) or one of the spe-
cialised interrupt handling routines is entered, is
shown in Figure 10.1.

.... | Previous top of stack

(rps 2) T ps | old PS
(r7 1) 6 pc | old PC (r7)
(r0 0) 5—> 1| r0 | oldr0

4 nps | new PS after trap
(r1  -2) 3 rl | oldrl
(r6 -3) 2 sp | old SP for previous mode

1 dev | masked new PS

0 —> | tpc | return address in “call”
(r5 -6 -1 (r5) | old r5
(r4 -7 2 (r4) | old r4
(r3 -8 3 (r3) | old r3
(r2 -9 4 (r2) | old r2

Figure 10.1

Columns (2) and (3) give the positions of stack
words relative to the positions in the stack of the
words labelled “r0” and “tpc” respectively.

Columns (1) and (2) define (or explain) the con-
tents of the file “reg.h” (Sheet 26).

Mde‘I”7 “Sp”, (£r1”7 ansﬂ MrO”, “pC” and “pS” in
that order are the names of the parameters used in
the declaration of the procedures “trap” (2693) and
“clock” (3725).

Note that just before entry to “trap” (“C” ver-
sion) or the other interrupt handling routines, the
values for the registers r2, r3, r4 and r5 have not
yet been saved in the stack. This is performed by a
call on “csv” (1g20) which is automatically included
by the “C” compiler at the beginning of every com-
piled procedure. The form of the call on “csv” is
equivalent to the assembler instruction

jsr r5,csv

This saves the current value of r5 on the stack
and replaces it by the address of the next instruc-
tion in the “C” procedure.

1421: This value of r5 is copied into r0;

1422: the current value of the stack pointer is
copied into r5.

Note that at this point, r5 points to a stack
location containing the previous value of r5 i.e. it
points to the beginning of a chain of pointers, one
per procedure, which “thread” the stack. When a
“C” procedure exits, it actually returns to “cret”
(1430) where the value of r5 is used to restore the
stack and r2, r3 and r4 to their earlier condition
(i-e. as they were immediately prior to entering the
procedure). For this reason r5 is often called the
environment pointer.
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11 Clock Interrupts

The procedure “clock” (3725) handles interrupts
from either the line frequency time clock (type
KW11-L, interrupt vector address 100) or the pro-
grammable real-time clock (type KW11-P, inter-
rupt vector address 104).

UNIX requires that at least one of these should
be available. (If both are present, only the line time
clock is used.)

Whichever clock is used, interrupts are gener-
ated at line frequency (i.e. with a 50 Hz power
supply, every 20 milliseconds). The clock interrupt
priority level is six, higher than for any other pe-
ripheral device on our typical system, so that there
will usually be very little delay in the initiation of
“clock” once the interrupt has been requested by
the clock controller.

11.1 clock (3725)

The function of “clock” is one of general housekeep-
ing:

o the display register is updated (PDP11/45
and 11/70 only);

e various accounting values such as the time of
day, accumulated processing times and exe-
cution profiles are maintained;

e processes sleeping for a fixed time interval are
awakened as per schedule;

e core swapping activity is initiated once per
second.

“clock” breaks most of the rules for peripheral
device handlers: it does reference the current “u”
structure, and it also runs at a low priority for some
of the time. It abbreviates its activity if a previous
execution has not yet completed.

3740: “display” is a no-op on the PDP11/40;

3743: The array “callout” (0265) is an array of
“NCALL” (0143) structures of type “callo”
(0260). The “callo” structure contains three
elements: an incremental time, an argument
and the address of a function. When the func-
tion element is not null, the function is to be
executed with the supplied argument after a
specified time.

(For the systems under study, the only func-
tion ever executed in this way is “ttrstrt”
(8486), handler. (See Chapter 25.));

3748: If the first element of the list is null, the
whole list is null;
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3750: The “callout” list is arranged in the desired
order of execution. The time recorded is the
number of clock ticks between events. Unless
the first time (the time before the next event)
is already zero, (meaning that the execution is
already due) this time should be decremented
by one.

If this time has already been counted to zero,
decrement the next time unless it is already
zero also, etc. i.e. decrement the first non-
zero time in the list. All the leading entries
with zero times represent operations which
are already due. (The operations are actually
carried out a little later.);

3759: Examine the previous processor status word,
and if the priority was non-zero, bypass the
next section, which executes those operations
which are due;

3766: Reduce the processor priority to five (other
level six interrupts may now occur);

3767: Search the “callout” array looking for oper-
ations which are due and execute them;

3773: Move the entries for operations which are
still not yet due, to the beginning of the array;

3787: The code from here until line 3797 is exe-
cuted, whatever the previous processor prior-
ity, at either priority level five or six;

3788: If the previous mode was “user mode”, then
increment the user time counter, and if an ex-
ecution profile is being accumulated, call “in-
cupc” (a895) to make an entry in a histogram
for the user mode program counter (PC).

“incupc” is written in assembler, presumably
for efficiency and convenience. A description
of what it does may be found in the section
“PROFIL(II)” of the UPM. See also the pro-
cedure “profil” (3667);

3792: If the previous mode was not user mode, in-
crement the system (kernel) time counter for
the process.

The code just described performs the basic time
accounting for the system. FEvery clock tick re-
sults in the incrementing of either “u.u_utime” or
“u.u_stime” for some process. Both “u.u_utime”
and “u.u_stime” are initialised to zero in “fork”
(3322). Their values are interrogated in “wait”
(3270). The values will go negative after 32K ticks
(about 10 hours)!

3795: “p_cpu” is used in determining process pri-
orities. It is a character value which is always



interpreted as a positive integer (0 to 255).
When it is moved to a special register, sign
extension occurs so that 255, for instance, be-
comes like —1. Adding one then leaves a zero
result. In this case the value is reduced to
-1 again, and stored as 255 unsigned. Note
that in the other places where “p_cpu” is ref-
erenced (2161, 3814), the top eight bits are
masked off after the value has been trans-
ferred to a special register;

3797: Increment “lbolt” and if it exceeds “HZ”,
i.e. a second or more has elapsed ...

3798: Then provided the processor was not pre-
viously running at a nonzero priority, do a
whole lot of housekeeping;

3800: Decrement “lbolt” by “HZ”;
3801: Increment the time of day accumulator;

3803: The events which follow may take some
time, but they may reasonably be interrupted
to service other peripherals. So the processor
priority is dropped below all the device prior-
ity levels i.e. below four.

However there is now a possibility of another
clock interrupt before this activation of the
“clock” procedure is completed. By setting
the processor priority to one rather than to
zero, a second activation of “clock” will not
attempt to execute the code from line 3804 on
also. Note however that to the hardware, pri-
ority one is functionally the same as priority
ZEr0;

3804: If the current time (measured in seconds)
is equal to the value stored in “tout”, wake
all processes which have elected to suspend
themselves for a period of time via the “sleep”

system call i.e. via the procedure “sslep”
(5979).

“tout” stores the time at which the next process
is to be awakened. If there is more than one such
process, then the remainder, which will have been
disturbed, must reset “tout” between them. This
mechanism, while quite effective, will not be effi-
cient if the number of such processes ever becomes
large.

In this situation, a mechanism similar to the
“callout” array (see 3767) would need to be pro-
vided. (In fact, how difficult would it be to merge
the two mechanisms? What would be the disadvan-
tages 77);

3806: When the last two bits of “time[1]” are zero
i.e. every four seconds, reset the scheduling

flag “runrun” and wake up everything wait-
ing for a “lightning bolt”. (“lbolt” represents
a general event which is caused every four sec-
onds, to initiate miscellaneous housekeeping.
It is used by “pcopen” (8648).);

3810: For all currently defined processes:

increment “p_time” up to a maximum of 127
(it is only a character variable);

decrement “p_cpu” by “SCHMAG” (3707)
but do not allow it to go negative. Note
that as discussed earlier (line 3795) “p_cpu”
is treated as a positive integer in the range 0
to 255;

if the processor priority is currently set at a
depressed value, recalculate it.

Note that “p_cpu” enters into the calculation
of process priorities, “p_pri”, by “setpri” (2156).
“p_pri” is used by “swtch” (2209) in choosing
which process, from among those which are in core
(“SLOAD”) and ready to run (“SRUN”), should
next receive the CPU’s attention.

“p_time” is used to measure how long (in sec-
onds) a process has been either in core or swapped
out to disk. “p_time” is set to zero by “newproc”
(1869), by “sched” (2047) and by “xswap” (4386).
It is used by “sched” (1962, 2009) to determine
which processes to swap in or out.

3820: If the scheduler is waiting to rearrange
things, wake it up. Thus the normal rate for
scheduling decisions is once per second;

3824: If the previous mode before the interrupt
was “user mode”, store the address of “r0” in
a standard place, and if a “signal” has been
received for the process, call “psig” (4043) for
the appropriate action.

11.2 timeout (3845)

This procedure makes new entries in the “call-
out” array. In this system it is only called from
the routine “ttstart” (8505), passing the procedure
“ttrstrt” (3486). Note that “ttrstrt” calls “ttstart”,
which may call “timeout”, for a thoroughly inces-
tuous relationship!

Note also that most of “timeout” runs at prior-
ity level seven, to avoid clock interrupts.
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12 Traps and System Calls

This chapter is concerned with the way the system
handles traps in general and system calls in partic-
ular.

There are quite a number of conditions which
can cause the processor to “trap”. Many of these
are quite clearly error conditions, such as hardware
or power failures, and UNIX does not attempt any
sophisticated recovery procedures for these.

The initial focus for our attention is the princi-
pal procedure in the file “trap.c”.

12.1 trap (2693)

The way that this procedure is invoked was ex-
plored in Chapter Ten. The assembler “trap” rou-
tine carries out certain fundamental housekeeping
tasks to set up the kernel stack, so that when
this procedure is called, everything appears to be
kosher.

The “trap” procedure can operate as though it
had been called by another “C” procedure in the
normal way with seven parameters

dev, sp, rl, nps, 10, pc, ps.

(There is a special consideration which should
be mentioned here in passing. Normally all param-
eters passed to “C” procedures are passed by value.
If the procedure subsequently changes the values of
the parameters, this will not affect the calling pro-
cedure directly.

However if “trap” or the interrupt handlers
change the values of their parameters, the new val-
ues will be picked up and reflected back when the
“previous mode” registers are restored.)

The value of “dev” was obtained by capturing
the value of the processor status word immediately
after the trap and masking out all but the lower five
bits. Immediately before this, the processor status
word had been set using the prototype contained in
the appropriate vector location.

Thus if the second word of the vector location
was “br7+n;” (e.g. line 0516) then the value of
“dev” will be n.

2698: “savfp” saves the floating point registers (for
the PDP11/40, this is a no-op!);

2700: If the previous mode is “user mode’;, the
value of “dev” is modified by the addition of
the octal value 020 (2662);

2701: The stack address where r0 is stored is noted
in “u.u.ar0” for future reference. (Subse-
quently the various register values can be ref-
erenced as “u.u-ar0[Rn]”.);
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2702: There is now a multi-way “switch” depend-
ing on the value of “dev”.

At this point we can observe that UNIX divides
traps into three classes, depending on the prior pro-
cessor mode and the source of the trap:

(a) kernel mode;
(b) user mode, not due to a “trap” instruction;

(c) user mode, due to a “trap” instruction.

12.2 Kernel Mode Traps

The trap is unexpected and with one exception, the
reaction is to “panic”. The code executed is the
“default” of the “switch” statement:

2716: Print:

e the current value of the seventh kernel
segment address register (i.e. the ad-
dress of the current per process data
area);

e the address of “ps” (which is in the ker-
nel stack); and

e the trap type number;
2719: “panic”, with no return.

Floating point operations are only used by pro-
grams, and not by the operating system. Since such
operations on the PDP11/45 and 11/70 are handled
asynchronously, it is possible that when a floating
point exception occurs, the processor may have al-
ready switched to kernel mode to handle an inter-
rupt.

Thus a kernel mode floating point exception
trap can be expected occasionally and is the con-
cern of the current user program.

2793: Call “psignal” (3963) to set a flag to show
that a floating point exception has occurred;

2794: Return.

This raises an interesting question: “Why are
the kernel mode and user mode floating point ex-
ceptions handled slightly diferently?”

12.3 User Mode Traps

Consider first of all a trap which is not generated as
the result of the execution of a “trap instruction”.
This is regarded as a probable error for which the
operating system makes no provision apart from the
possibility of a “core dump”. However the use pro-
gram itself may have anticipated it and provided
for it.



The way this provision is made and imple-
mented is the subject of the next chapter. At this
stage, the principal requirement is to “signal” that
the trap has occurred.

2721: A bus error has occurred while the system is
in user mode. Set “i” to the value “SIGBUS”
(0123);

2723: The “break” causes a branch out of the
“switch” statement to line 2818;

2733: Apart from the one special case noted, the
treatment of illegal instructions is the same
at this level as for bus errors;

2739:
2743:
2747:
2796: Cf. the comment for line 2721.

Note that cases “4+USER” (power fail) and
“7+USER” (programmed interrupt) are handled by
the “default” case (line 2715).

2810: This represents a case where operating sys-
tem assistance is required to extend the user
mode stack area.

The assembler routine “backup” (1012) is
used to reconstruct the situation that ex-
isted before execution of the instruction that
caused the trap.

“grow” (4136) is used to do the actual exten-
sion.

The procedure “backup” is non-trivial and its
comprehension involves a careful consideration of
various aspects of the PDP11 architecture. It has
been left for the interested reader to pursue pri-
vately.

As noted for the PDP11/40, “backup” may not
always succeed because the processor does not save
enough information to resolve all possibilities.

218: Call “psignal” (3963) to set the appropri-
ate “signal”. (Note that this statement is
only reached from those cases of the “switch”
which included a “break” statement.);

2821: “issig” checks if a “signal” has been sent to
the user program, either just now or at some
earlier time and has not yet been attended to;

2822: “psig” performs the appropriate actions.
(Both “issig” and “psig” are discussed in de-
tail in the next chapter.);

2823: Recalculate the priority for the current pro-
cess.

12.4 System Calls

User mode programs use “trap” instructions as part
of the “system call” mechanism to call upon the
operating system for assistance.

Since there are many possible “versions” of the
“trap” instruction, the type of assistance requested
can be and is encoded as part of the “trap” instruc-
tion.

Parameters which are part of a system call may
be passed from the user program in different ways:
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(a) via the special register r0;

(b) as a set of words embedded in the program
string following the “trap” instruction;

(c) as a set of words in the program’s data area.
(This is the “indirect” call.)

Indirect calls have a higher overhead than di-
rect system calls. Indirect calls are needed when
the parameters are data dependent and cannot be
determined at compile time.

Indirect calls may sometimes be avoided if there
is only one data dependent parameter, which is
passed via r0. In choosing which parameters should
be passed via r0, the system designers have presum-
ably been guided by their own experience, since the
pattern doesn’t satisfy the law of least astonish-
ment.

The “C” compiler does not give special recog-
nition to system calls, but treats them in the
same way as other procedures. When the loader
comes to resolve undetermined references, it satis-
fies these with library routines which contain the
actual “trap” instructions.

2752: The error indicators are reset;

2754: The user mode instruction which caused the
trap is retrieved and all but the least signifi-
cant six bits are masked off. The result is used
to select an entry from the array of structures,
“sysent”. The address of the selected entry is
stored in “callp”;

2755: The “zeroeth” system call is the “indirect”
system call, in which the parameter passed is
actually the address in the user program data
space of a system call parameter sequence.

Note the separate uses of “fuword” and “fui-
word”. The distinction between these is unimpor-
tant on the PDP11/40, but is most important on
machines with separate “i” and “d” address spaces;

2760: “i=077" simulates a call on the very last
system call (2975), which results in a call on
“nosys” (2855), which results in an error con-
dition which will usually be fatal for the user
mode program;
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2762:

2765: The number of arguments specified in “sy-
sent” is the actual number provided by the
user programmer, or that number less one
if one argument is transferred via r0. The
arguments are copied from the user data
or instruction area into the five element ar-
ray “uv.u-arg”. (From “sysent” (Sheet 29) it
would seem that four elements would have
been sufficient for “u_area[ ]” — is this an al-
lowance for future inflation?);

2770: The value of the first argument is copied into
“u.u_dirp”, which seems to function mainly as
a convenient temporary storage location;

2771: “trapl” is called with the address of the de-
sired system routine. Note the comment be-
ginning on line 2828;

2776: When an error occurs, the “c-bit” in the old
processor status word is set (see line 2658)
and the error number is returned via r0.

12.5 System Call Handlers

The full set of system calls may be reviewed in the
file “sysent.c” on Sheet 29, but more relevantly,
these are discussed in full detail in Section II of
the UPM.

The procedures which handle the system calls
are found mostly in the files “sysl.c”, sys2.c,
sys3.c” and “sysd.c”.

Two important “trivial” procedures are “null-
sys” (2855) and “nosys” (2864) which are found in
the file “trap.c”.

12.6 The File ‘sysl.c’

This file contains the procedures for five system
calls, of which three will be considered now, and
two (“rexit” and “wait”) will be deferred to the
next chapter.

The first procedure in this file, and also the first
system call we have encountered, is “exec”.

12.7 exec (3020)

This system call, #11, changes a process execut-
ing one program into a process executing a differ-
ent program. See Section “EXEC(II)” of the UPM.
This is the longest and one of the most important
system calls.

3034: “namei” (6618) (which is discussed in de-
tail in Chapter 19) converts the first argu-
ment (which is a pointer to a character string
defining the name of the new program) into
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an “inode” reference. (“inodes” are essential
parts of the file referencing mechanism.);

3037: Wait if the number of “exec”s currently un-
der way is too large (See the comment on line

3011.);

3040: “getblk(NODEV)” results in the allocation
of a 512 byte buffer from the pool of buffers.
This buffer is used temporarily to store in
core, that information which is currently in
the user data area, and which is needed to
start the new program. Note that the second
argument in “u.u_arg” is a pointer to this in-
formation;

3041: “access” returns a non-zero result if the file
is not executable. The second condition ex-
amines whether the file is a directory or a
special character file. (It would seem that by
making this test earlier, e.g. just after line
3036, the efficiency of the code could be im-
proved.);

3052: Copy the set of arguments from the user
space into the temporary buffer;

3064: If the argument string is too large to fit in
the buffer, take an error exit;

3071: If the number of characters in the argument
string is odd, add an extra, null character;

3090: The first four words (8 bytes) of the named
file are read into “u.u_arg”. The interpreta-
tion of these words is indicated in the com-
ment beginning on line 3076 and, more fully,
in the section “A.OUT(V)” of the UPM.

Note the setting of “u.u_base”, “u.u_count”,
“u.uoffset” and “u.usegflg” preparatory to
the read operation;

3095: If the text segment is not to be protected,
add the text area size to the data area size,
and set the former to zero;

3105: Check whether the program has a “pure”
text area, but the program file has already
been opened by some other program as a data
file. If so, take the error exit;

3127: When this point is reached, the decision to
execute the new program is irrevocable i.e.
there is no longer the opportunity to return
to the original program with an error flag set;

3129: “expand” here actually implies a major con-
traction, to the “per process data” area only;

3130: “xalloc” takes care of allocating (if neces-
sary) and linking to the text area;



3158: The information stored in the buffer area is
copied into the stack in the user data area of
the new program;

3186: The locations in the kernel stack which con-
tain copies of the “previous” values of the reg-
isters in user mode are set to zero, except for
r6, the stack pointer, which was set at line
3155;

3194: Decrement the reference count for the “in-

ode” structure;
3195: Release the temporary buffer;

3196: Wake up any other process waiting at line
3037.

12.8 fork (3322)

A call on “exec” is frequently preceded by a call
on “fork”. Most of the work for “fork” is done by
“newproc” (1826), but before the latter is called,
“fork” makes an independent search for a slot in
the “proc” array, and remembers the place as “p2”
(3327).

“newproc” also searches “proc” but indepen-
dently. Presumably it always locates the same
empty slot as “fork”, since it does not report the
value back. (Why is there no confusion on this
point?)

3335: For the new process, “fork” returns the value
of the parent’s process identification, and ini-
tialises various accounting parameters;

3344: For the parent process, “fork” returns the
value of the child’s process identification, and
skips the user mode program counter by one
word.

Note that the values finally returned to a “C” pro-
gram are slightly different from the above. Refer to
the section FORK(IT) of the UPM.

12.9 sbreak (3354)

This procedure implements system call #17 which
is described in the Section “BREAK (II)” of the
UPM. The comment at the head of the procedure
has confused more than one reader: clearly the
identifier “break” is used in “C” programs (leave
an enclosing program loop) in an entirely different
way from that intended here (change the size of the
program data area).

“sbreak” has clear similarities with the proce-
dure “grow” (4136) but unlike the latter, it is only
invoked explicitly and may in fact cause a contrac-
tion of the data area as well as an expansion (de-
pending on the new desired size).

3364: Calculate the new size for the data area (in
32 word blocks);

3371: Check that the new size is consistent with
the memory segmentation constraints;

3376: The area is shrinking. Copy the stack area
down into the former data area. Call “ex-
pand” to trim off the excess;

3386: Call “expand” to increase the total area.
Copy the stack area up into the new part, and
clear the areas which were formerly occupied
by the stack.

The following procedures which are also con-
tained in “sysl.c” are described in Chapter 13:

rexit (3205)
exit (3219)

wait (3270)

12.10 The Files ‘sys2.c’ and ‘sys3.c’

“sys2.c” and “sys3.c” are mainly concerned with
the file system and input/output, and they have
been relegated to Section Four of the operating sys-
tem source code.

12.11 The File ‘sys4.c’

All the procedures in this file implement system
calls. The following procedures are described in
Chapter 13:

ssig (3614) kill (3630)

The following procedures are straightforward
and have been left for the amusement and edifi-
cation of the reader:

getswit (3413) sync (3486)
gtime (3420) getgid (3472)
stime (3428) getpid (3480)
setuid (3439) nice (3493)
getuid (3452) times (3656)
setgid (3460) profil (3667)

The following procedures which are concerned
with file systems, are described later:

unlink (3510)
chdir (3538)
chmod (3560)

chown (3575)
smdate (3595)
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13 Software Interrupts

The principal concern of this chapter is the content
of the file “sig.c”, which appears on Sheets 39 to
42. This file introduces a facility for communica-
tion between processes. In particular it provides
for the course of one “user mode” process to be
interrupted, diverted or terminated by the action
of another process or as the result of an error or
operator action.

In this discussion the term “software interrupt”
has been deliberately used in place of the term “sig-
nal”. This latter has been eschewed because it has
obtained connotations in the UNIX milieu which
are rather different from the usage of ordinary En-
glish.

UNIX recognises 20 (“NSIG”, line 0113) differ-
ent types of software interrupts, of which (as the
reader may discover for himself by perusal of the
the Section “SIGNAL (II)” of the UPM) thirteen
have standard names and associations. Interrupt
type #0 is interpreted as “no interrupt”.

Within the “per process data area” of each pro-
cess is an array, “u.usignal”, of “NSIG” words.
Each word corresponds to a different software in-
terrupt type and defines the action which should
be taken if the process encounters that kind of soft-
ware interrupt:

u.signal[n] when interrupt #n occurs

Z€ro the process will terminate itself;

odd non-zero  the software interrupt is ignored;
the value is taken as the address
in user space of a procedure which
which should be executed
forthwith.

even non-zero

Interrupt type #9 (“SIGKILL”) is especially

distinguished because UNIX ensures that “u.u_signal[9]”

remains zero until the very end of a process’s ex-
istence, so that if a process is ever interrupted for
that reason, it will always terminate itself.

13.1 Anticipation

Each process can set the contents of the array
“u.u_signal[]” (with the exception of “u.u_signal[9]”
as just noted) in anticipation of future interrupts
so that the appropriate action is taken. The user
programmer does this via the “signal” system call
(see “SIGNAL (II)” of the UPM).

Thus if for example the programmer wishes to
ignore software interrupts of type #2 (which result
if the user hits the “delete” key on his terminal), he
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should set “u.u_signal[2]” to one by executing the
system call

“signal (2,1);”

from his “C” program.

13.2 Causation

An interrupt is “caused” for a process quite sim-
ply by setting the value of “p_sig” (0363) in the
process’s “proc” entry, to the type number appro-
priate to the interrupt (i.e. a value in the range 1
to “NSIG”-1).

“psig” is always directly accessible, even when
the affected process and its “per process data area”
have been swapped out to disk. Obviously this
mechanism only allows one interrupt per process
to be outstanding at any one time. The outstand-
ing interrupt will always be the most recent one,
unless one of the interrupts was of type #9, which
always prevails.

13.3 Effect

The effect of a software interrupt never takes place
immediately. It may occur after only some slight
delay if the affected process is currently running,
or possibly after a considerable delay if the affected
process is suspended and has been swapped out.

The action dictated by the interrupt is always
inflicted on the affected process by itself, and hence
can only occur when the affected process is active.

Where the effect is to execute a user defined
procedure, the kernel mode process adjusts the
user mode stack to make it appear that the proce-
dure had been entered and immediately interrupted
(hardware style) before executing the first instruc-
tion. The system then returns from kernel mode to
user mode in the usual manner. The result of all
this is that the next user mode instruction which
is executed is the first instruction of the designated
procedure.

13.4 Tracing

The software interrupt facility has been extended to
provide a powerful but somewhat inefficient mech-
anism whereby a parent process may monitor the
progress of one or more child processes.

13.5 Procedures

Since the interrelationships of the procedures asso-
ciated with software interrupts are somewhat con-
fusing at first sight, it is worthwhile introducing the
procedures briefly before plunging in with both feet



13.6 A. Anticipation

“ssig” (3614) implements system call #48 (“sig-
nal”) to set the value in one element of the array
“u.u_signal”.

13.7 B. Causation

“kill” (3630) implements system call #37 (kill) to
cause a specified interrupt to a process defined by
its process identifying number.

“signal” (3949) causes a specified interrupt to be
caused for all processes controlled and/or initiated
from a specified terminal.

“psignal” (3963) is called by “kill” (3649) and
“signal” (3955) (also “trap” (2793, 2818) and “pipe”
(7828)) to do the actual setting of “p_sig”.

13.8 C. Effect

“issig” (3991) is called by “sleep” ( 2085), “trap”
(2821) and “clock” (3826) to enquire whether there
is an outstanding non-ignorable software interrupt
for the active process just waiting to happen.

“psig” (4043) is called whenever “issig” returns
a non-zero result (except in “sleep” where things
are a little more complex) to implement the action
triggered by the interrupt.

“core” (4094) is called by “psig” if a core dump
is indicated for a terminating process.

“grow” (4136) is called by “psig” to enlarge the
user mode stack area if necessary.

“exit” (3219) terminates the currently active
process.

13.9 D. Tracing

“ptrace” (4164) implements the “ptrace” system
call #26.

“stop” (4016) is called by “issig” (3999) for a
process which is being traced to allow the supervis-
ing parent to have a “look-see”.

“procxmt” (4204) is a procedure called from
“stop” (4028) whereby the child carries out certain
operations related to tracing, at the behest of the
parent.

13.10 ssig (3614)

This procedure implements the “signal” system
call.

3619: If the interrupt reason is out of range or is
equal to “SIGKILL” (9), take an error exit;

3623: Capture the initial value in “u.u_signal[a)”
for return as the result of the system call;

3624: Set the element of “u.u_signal” to the de-
sired value ...

3625: If an interrupt for the current reason is
pending, cancel it. (It is not clear why this
step should be necessary or even desirable.
Any suggestions??)

13.11 kill (3630)

This procedure implements the “kill” system call
to cause a specified type of software interrupt to
another designated process.

3637: If “a” is non-zero, it is the process identify-
ing number of a process to be interrupted. If
“a” is zero, then all processes originating from
the same terminal as the current process are

to be interrupted;

3639: Consider each entry in the “proc” table in
turn and reject it if: it is the current process
(3640); it is not the designated process (3642);
no particular process was designated (“a” ==
0) but it does not have the same controlling
terminal or it is one of the two initial pro-
cesses (3644); the user is not the “super user”

and the user identities do not match (3646);

3649: For any process that survives the above
tests, call “psignal” to change “p_sig”.

13.12 signal (3949)

For every process, if it is controlled by the specified
terminal (denoted by “tp”), hit it with “psignal”.

13.13 psignal (3963)

3966: Reject the call if “sig” is too large (but why
not if negative?? “kill” does not check this
parameter before passing it to “psignal”. Ad-
mittedly the “kill” command could only result
in a positive value for “sig” ...);

3971: If the current value of “p_sig” is NOT set
to “SIGKILL”, then overwrite it (i.e. once a
process has been “killed outright” there is no
way to revive it.);

3973: Seems to be an error here ... for “p_stat”
read “p_pri” ... improve the priority of the
process if it is not too good;

3975: If the process is waiting for a non-kernel

event i.e. it called “sleep” (2066) with a pos-
itive priority, then set it running again.
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13.14 issig (3991)
3997: If “p_sig” is non-zero, then ...

3998: If the “tracing” flag is on, call “stop” (this
topic will be resumed later);

4000: Return a zero value if “p_sig” is zero. (This
apparently redundant test is necessary be-
cause “stop” may reset “p_sig” as a side ef-
fect.);

4003. If the value in the corresponding el-
ement of “u.u_signal” is even (may be zero)
return a non-zero value;

4006: Otherwise return a zero value.

The comment regarding the frequency of calls
on “issig” which occurs on lines 3983 to 3985 needs
some clarification. At least one call on “issig” is a
part of every execution of “trap” but only of one
interrupt routine (“clock”, which calls “issig” only
once per second). In cases where “pri” is positive,
“sleep” (2073, 2085) calls “issig” before and after
calling “swtch”.

13.15 psig (4043)

This procedure is only called if “u.u_signal[n]” was
found by “issig” to have an even value. If this value
is found (4051) to be non-zero, it is taken as the
address of a user mode function which has to be
executed.

4054: Reset “u.usignal[n]” except the case where
the interrupt for an illegal instruction or trace
trap;

4055: Calculate the user space addresses of the
lower of two words which are to be inserted
into the user mode stack ...

4056: Call “grow” to check the current user mode
stack size, and to extend it (downwards!) if
necessary;

4057: Put the values of the processor status regis-
ter and the program counter which were cap-
tured at the time of the “trap” or hardware
interrupt (in the case of a “clock” interrupt)
into the user stack, and update the “remem-
bered” values of r6, r7 and the processor sta-
tus word. Upon returning to user mode, ex-
ecution will resume at the beginning of the
designated procedure. When this procedure
returns, the procedure which was originally
interrupted will be resumed;

4066: If “u.u_signal[n]” is zero, then for the inter-
rupt types listed, generate a core image via
the procedure “core”;
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4079: Store a value in “u.u_arg[0]” composed of
the low order byte of the remembered value
of r0, and of “n”, which records the interrupt
type and whether a core image was success-
fully created;

4080: Call “exit” for the process to terminate it-
self.

13.16 core (4094)

This procedure copies the swappable program im-
age into a file called “core” in the user’s current
directory. A detailed explanation of this procedure
must wait until the material of Sections Three and
Four, which deal with input/output and file sys-
tems, have been covered.

13.17 grow (4136)

The parameter, “sp”, of this procedure defines the
address of a word which should be included in the
user mode stack.

4141: If the stack already extends far enough, sim-
ply return with a zero value.

Note that this test relies on the idiosyncrasies
of 2’s complement arithmetic, and if both

[spl > 25
and
| w.u_size 64| > 215

the decision to extend the stack may be taken
wrongly at this juncture;

4143: Calculate the stack size increment needed to
include the new stack point plus a 20*32 word
margin;

4144: Check that this value is in fact positive (i.e.
we are not dealing with a failure of the test
on line 4141.);

4146: Check that the new stack size does not
conflict with the memory segmentation con-
straints (“estabur” sets “u.u_error” if they
do) and reset the segmentation register pro-
totypes;

4148: Get a new, enlarged data area, copy the
stack segments (32 words at a time) into the
high end of the new data area, and clear the
segments which now become the stack expan-
sion;

4156: Update the stack size, “u.u_ssize” and re-
turn a “successful” result.



13.18 exit (3219)

This procedure is called when a process is to termi-
nate itself.

3224: Reset the “tracing” flag;

3225: Set all of the values in the array “u.u_signal”
(including “u.u_signal[SIGKILL]”) to one so
that no future execution of “issig” will ever
be followed by execution of “psig”;

3227: Call “close” (6643) to close all the files which
the process has open. (For the most part,
“closing” simply involves decrementing a ref-
erence count.);

3232: Reduce the reference count for the current
directory;

3233: Sever the process’s connection with any text
segment;

3234: A place is needed to store “per process” in-
formation until the parent process can look at
it. A block (256 words) in the swap area of
the disk is a convenient place;

3237: Find a suitable buffer (256 words) and ...

3238: Copy the lower half of the “u” structure
into the buffer area;

3239: Write the buffer into the swap area;

3241: Enter the core space occupied by the pro-
cess into the free list. (This space is of course
still in use, but the use will terminate before
any other process gets to dip into the free list
again. This could not be done any sooner,
because, as will be seen later, both “getblk”
and “bwrite” can call “sleep”, during which
all sorts of things might happen. In view of
all this, it might be reasonable if the state-
ment

expand (USIZE);

were inserted after line 3226.);
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3243: Set the process state to “zombie” (i.e.
corpse said to be revived by witchcraft”
(O.E.D.));

a

3245: The remaining code searches the “proc” ar-
ray to find the parent process and to wake it
up, to make any children “wards of the state”,
and, if they have “stopped” for tracing, to re-
lease them. Finally the code includes (for this
process) a last call on “swtch”.

Before going on to consider tracing, there are
two routines which are closely associated with
“exit”, which can be conveniently disposed of now.

13.19 rexit (3205)

This procedure implements the “exit” system call,
#1. It simply salvages the low order byte of the user
supplied parameter and saves it in “u.u_arg[0]”.
which is in the lower half of the “u” structure i.e.
the part that is written to the “swap area” as a
“zombie”.

13.20 wait (3270)

For every call on “exit”, there should be a match-
ing call on “wait” by an anxious parent or ances-
tor. The principal function of the latter procedure,
which implements the “wait” system call, is for the
parent or ancestor to find and dispose of a “zombie”
child.

“wait” also has a secondary function, to look for
children which have “stopped” for tracing (which is
the next major topic).

3277: Search the whole “proc” array looking for
child processes. (If none exist, take an error
exit (line 3317));

3280: If the child is a “zombie”:

e save the child’s process identifying num-
ber, to report back to the parent;

e read the 256 word record back from the
disk swap area, and release the swap
space;

e reinitialise the “proc” array entry;

e accumulate the various accounting en-
tries;
save the “u_arg[0]” value also to report
back to the parent;

3300: Is the child in a “stopped” state? (If so, wait
for the discussion on tracing);

3313: If one or more children were found but none
were “zombies” or “stopped”, “sleep” and
then look again.

13.21 Tracing

The tracing facilities are provided through a modi-
fication and extension of the software interrupt fa-
cilities. Briefly, if a parent process is tracing the
progress of child process, every time the child pro-
cess encounters a software interrupt, the parent pro-
cess is given the opportunity to intervene as part of
the total response to the interrupt.

The parent’s intervention may involve interro-
gation of values within the child process’s data ar-
eas, including the “per process data area”. Subject
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to certain constraints, the parent process may also
change values within these data areas.

The source of the software interrupts may be the
parent process, the user himself (e.g. by entering
“kill” commands or “delete”s through his terminal)
or the child process itself (e.g. instructions or other
maladies).

The communication between child and parent
processes is a kind of ritual dance:

(1) the child experiences a software interrupt and
“stops”;

(2) the waiting parent discovers the “stopped”
child (line 3301), and revives. Subsequently

(3) the parent may execute the “ptrace” system
call which has the effect of leaving a request
message in the system defined structure “ipc”
(3939) for the child process;

(4) the parent then goes to “sleep” while the child
“wakes up”;

(5) the child reads the message in “ipc” and acts
upon it (e.g copying one of its own values into
“ipc.ip_data”);

(6) the child then goes to “sleep” while the parent
“wakes up”;

(7) the parent inspects the result, as recorded in
“ipc”, of the operation;

(8) steps (3) to (7) may be repeated several times
in succession.

Finally the parent may allow the child to con-
tinue its normal execution, possibly without ever
knowing that a software interrupt had occurred.

A discussion of the tracing facility is contained
in the Section “PTRACE (II)” of the UPM. To the
list of functional limitations noted in the “Bugs”
paragraph, we can add the following comments on
efficiency:

e There should be a mechanism for transferring
large blocks (e.g. up to 256 words at a time)
of information from the child to the parent
(though not necessarily in the reverse direc-
tion);

e There should be a proper coroutine procedure

(analogous to “swtch”) to allow rapid transfer
of control between child and parent.
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13.22 stop (4016)

This procedure is called by “issig” (3999) if the trac-
ing flag (“STRC”, 0395) is set.

4022: If your parent is process 1 (i.e. “/etc/init”),
then call “exit” (line 4032);

4023: Otherwise look through “proc” for your par-
ent ... wake him up ... declare yourself
“stopped” and ... call “swtch” (Note do NOT
call “sleep”. Why?);

4028: If the tracing flag has been reset, or the re-
sult of the procedure “procxmt” is true, re-
turn to “issig”;

4029: Otherwise start again.

13.23 wait (3270) (continued)
3301: If the child process has “stopped” and ...

3302: If the “SWTED” flag is not set (i.e. the
parent hasn’t noticed this child lately) ...

3303: As an “aide-memoire” set the “SWTED”
flag. Set “u.u_arO[R0]”, “u.u-ar0[R1]” so that
the child process status word is returned to
the parent;

3309: The “SWTED” flag was set. This means
that the parent, by performing at least two
“waits” in succession without any interven-
ing call on “ptrace”, is not very interested in
the child. So reset both the “STRC” and the
“SWTED?” flags and release the child. (Note
the use of “setrun” (not “wakeup”) to com-
plement the call on “swtch” (4027)).

13.24 ptrace (4164)

This procedure implements the “ptrace” system
call, #26.

4168: “u.u_arg[2]” corresponds to the first param-
eter in the “C” program calling sequence. If
this is zero, a child process is asking to be
traced by its parent, so set the “STRC” flag
and return.

Note that this code handles the only explicit
action the child process is asked to take with respect
to tracing. There is no real reason why even this
action should be taken by the child process and not
by the parent process. From a security point of view
it is most probably desirable that a child process
should only be traceable if it gives its permission.
On the other hand, if the child asks to be traced and
is then ignored by the parent, the child process may



be blocked indefinitely. Perhaps the best solution
would be for the “STRC” flag to be set only after
explicit action by both the parent and the child.

4172: Search the “proc” table looking for a process
which: is stopped; matches the given process
identifying number; is a child of the current
process;

4181: Wait for the “ipc” structure to become avail-
able if it is currently in use;

[434

ipc
4187: reset the “SWTED” flag, and ...

7

4183: Copy the parameters into

4188: return the child to a “ready to run” state;
4189: Sleep until “ipc.ip_req” is nonpositive (4212);

4191: Extract a value that is to be returned to
the parent process, check for errors, unlock
“ipc” and “wake up” any processes waiting

for “ipc”.

Note that the “sleeps” on lines 4182, 4190 are
for essentially different reasons, and could be dif-
ferentiated to good effect by replacing “&ipc” by
“&ipc.ip_req” on lines 4190 and 4213.

13.25 procxmt (4204)

This procedure is executed by the child process un-
der the influence of data left by the parent in the
ipc structure.

4209: If “ipc.iplock” is set wrongly for the cur-
rent process, then certainly the rest of “ipc”
should be ignored.

After “stop” (4027) calls “swtch”, the chide pro-
cess is restarted by one of three calls on “setrun”
which leave the “STRC” and “SWTED” flags in
the state indicated:

STRC SWTED ipc.ipc_lock
exit (3254)  set set arbitrary
wait (3310) reset  reset arbitrary
ptrace (4188) set reset properly set

In the third case “ptrace” will always set “ipc.ip_lock”

properly, before the child is restarted, so that there
is then no chance of the test on 4209 into “ipc”
failing.

In the second case, where the parent has ignored
the child, “procxmt” will never in fact be called.

By executing the statement “return(0)”; on line
4210, “procxmt” forces “stop” to loop back to line
4020. In the case where the parent has already
died, the test on line 4022 will then fail, and a call
on “exit” (4032) will result.

4211: Store the value of “ipc.ip_req” before reset-
ting the latter, “wake up” the parent, and
select the next action as indicated.

The various actions are adequately explained in
Section “PTRACE (II)” of the UPM, with the one
qualification that cases 1, 2 and 4, 5 are docu-
mented the wrong way around (i.e. “I” and “D”
spaces respectively, not “D” and “I”!).
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Section Three

Section Three is concerned with basic input/output
operations between the main memory and disk stor-
age.

These operations are fundamental to the activities
of program swapping and the creation and referencing
of disk files.

This section also introduces procedures for the use
and manipulation of the large (512 byte) buffers.

14 Program Swapping

UNIX, like all time-sharing systems, and some mul-
tiprogramming systems uses “program swapping”
(also called “rollin/roll-out”) to share the limited
resource of the main physical memory among sev-
eral processes.

Processes which are suspended may be selec-
tively “swapped out” by writing their data seg-
ments (including the “per process data”’) into a
“swap area” on disk

The main memory area which was occupied
can then be reassigned to other processes, which
quite probably will be “swapped in” from the “swap
area”.

Most of the decisions regarding “swapping out”,
and all the decisions regarding “swapping in”, are
made by the procedure “sched”. “Swapping in” is
handled by a direct call (2034) on the procedure
“swap” (5196), whereas “swapping out” is handled
by a call (2024) on “xswap” (4368).

For those archaeologists who like to ponder the
“bones” of earlier versions of operating systems, it
seems that originally “sched” called “swap” directly
to “swap out” processes, rather than via “xswap”.
The extra procedure (one of several to be found
in the file “text.c”) has been necessitated by the
implementation of the sharable “text segments”.

It is instructive to estimate how much extra code
has been necessitated by the text segment feature:
in “text.c” are four procedures “xswap”, “xalloc”,
“xfree” and “xccdec”, which manipulate an array
of structures called “text”, which is declared in the
file “text.h”. Additional code has also been added
to “sysl.c” and “slp.c”.

14.1 Text Segments

Text segments are segments which contain only
“pure” code and data i.e. code and data which
remain unaltered throughout the program execu-
tion, so that they may be shared amongst several
processes executing the same program.

The resulting economies in space can be quite
substantial when many users of the system are ex-
ecuting the same program simultaneously e.g. the
editor or the “shell”.
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Information about text segments must be stored
in a central location, and hence the existence of the
“text” array. Each program which shares a text
segment keeps a pointer to the corresponding text
array element in “u.u_textp”.

The text segment is stored at the beginning of
the code file. The first program to begin execution
causes a copy of the text segment to be made in the
“swap” area.

When subsequently no programs are left which
reference the text segment, the resources absorbed
by the text segment are released. The main mem-
ory resource is released whenever there are no pro-
grams which reference the text segment currently in
main memory; the “swap” area is released in gen-
eral whenever there are no programs left running
which reference the text segment.

The numbers in each of these states are denoted
by “x_ccount” and “x_count” respectively. Decre-
menting these numbers is handled by the routines
“xccdec” and “xfree” which also take care of re-
leasing resources when the counts reach zero. (“xc-
cdec” is called whenever a program is swapped out
or terminates. “xfree” is called by “exit” whenever
a program terminates.)

14.2 sched (1940)

Process #0 executes “sched”. When it is not wait-
ing for the completion of an input/output operation
that it has initiated, it spends most of its time wait-
ing in one of the following situations:

A. (runout) None of the processes which are swap-
ped out is ready to run, so that there is noth-
ing to do. The situation may be changed by
a call to “wakeup”, or to “xswap” called by
either “newproc” or “expand”.

B. (runin) There is at least one process swapped
out and ready to run, but it hasn’t been out
more than 3 seconds and/or none of the pro-
cesses presently in main memory is inactive
or has been there more than 2 seconds. The
situation may be changed by the effluxion of
time as measured by “clock” or by a call to
“sleep”.

When either of these situations terminate:

1958: With the processor running at priority six,
so that the clock can’t interrupt and change
values of “p_time”, a search is made for the
process which is ready to run and has been
swapped out for the longest time;

1966: If there is no such process then situation A
holds;



1976: Search for a main memory area of adequate
size to hold the data segment. If an associ-
ated text segment must be present also but
is not currently in main memory, the area is
increased by the size of the text segment;

1982: If an area of adequate size is available the
program branches to “found2” (2031). (Note
that the program does not handle the case
where there is sufficient space for both text
and data segments but in distinct areas of
main memory. Would it be worth while to
extend the code to cover this possibility?);

1990: Search for a process which is in main mem-
ory, but which is not the scheduler or locked
(i.e. already being swapped out), and whose
state is “SWAIT” or “SSTOP” (but not
“SSLEEP”) (i.e. the process is waiting for an
event of low precedence, or has stopped dur-
ing tracing (see Chapter Thirteen)). If such a
process is found, go to line 2021, to swap the
image out.

Note that there seems to be a bias here
against processes whose “proc” entries are
early in the “proc” array;

2003: If the image to be swapped in has been out
less than 3 seconds, then situation B holds;

2005: Search for the process which is loaded, but
is not the scheduler or locked, whose state
is “SRUN” or “SSLEEP” (i.e. ready to run,
or waiting for an event of high precedence)
and which has been in main memory for the
longest time;

2013: If the process image to be swapped out has
been in main memory for less than 2 seconds,
then situation B holds.

The constant “2” here (also the “3” on line
2003) is somewhat arbitrary. For some reason
the programmer has departed from his usual
practice of naming such constants to empha-
sise their origins;

2022: The process image is flagged as not loaded
and is swapped out using “xswap” (4368).

Note that the “SSWAP” flag is not set here
because the process swapped out is not the
current process. (Cf. lines 1907, 2286);

2032: Read the text segment into main memory if
necessary. Note that the arguments for the
“swap” procedure are:

e an address within the swap area of the
disk;

e a main memory address (ordinal number
of a 32 word block);

e a size (number of 32 word blocks to be
transferred);

e a direction indicator (“B_READ==1"
denotes “disk to main memory”);

2042: Swap in the data segment and ...

2044: Release the disk swap area to the available
list, record the main memory address, set
the “SLOAD” flag and reset the accumulated
time indicator.

14.3 xswap (4368)

4373: If “oldsize” data was not supplied, use the
current size of the data segment stored in “u”;

4375: Find a space in the disk swap area for the
process’s data segment. (Note that the disk
swap area is allocated in terms of 512 charac-
ter blocks);

4378: “xccdec” (4490) is called (unconditionally!)
to decrease the count, associated with the text
segment, of the number of “in main memory”
processes which reference that text segment.
If the count becomes zero, the main memory
area occupied by the text segment is simply
returned to the available space. (There is no
need to copy it out, since, as we shall see,
there will be a copy already in the disk swap
area);

4379: The “SLOCK” flag is set while the pro-
cess is being swapped out. This is to pre-
vent “sched” from attempting to “swap out”
a process which is already in the process of
being “swapped out”. (This can only hap-
pen if “swapping out” was started initially by
some routine other than “sched” e.g. by “ex-
pand”);

4382: The main memory image is released except
when “xswap” is called by “newproc”;

4388: If “runout” is set, “sched” is waiting for
something to “swap in”, so wake it up.

14.4 xalloc (4433)

“xalloc” is called by “exec” (3130), when a new
program is being initiated, to handle the allocation
of, or linking to, the text segment. The argument,
“ip”, is a pointer to the “mode” of the code file. At
the time of this call, “u.u-arg[1]” contains the text
segment size in bytes.
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4439: If there is no text segment, return immedi-
ately;

4441: Look through the “text” array for both an
unused entry and an entry for the text seg-
ment. If the latter can be found, do the book-
keeping and go to “out” (4474);

4452: Arrange to copy the text segment into the
disk swap area. Initialise the unused text en-
try, and get space in the disk swap area;

4459: Change the space occupied by the process to
one large enough to contain the “per process
data” area and the text segment;

4460: The call on “estabur” is necessary to set the
user mode segmentation registers before read-
ing the code file;

4461: A UNIX process can only initiate one in-
put/output operation at a time. Hence it is
possible to store i/o parameters at standard
locations in the “u” structure, viz. “u.u_count”,

“u.u_offset] ]” and “u.u_base”;

4462: The octal value 020 (decimal 16) is an offset
into the code file;

4463: Information is to be read into the area be-
ginning at location zero in the user address
space;

4464: Read the text segment part of the code file
into the current data segment;

4467: “Swap out” the data segment (minus the
“per process data”) into the disk swap area
reserved for the text segment;

4473: “Shrink” the data segment — it is about to
be swapped out;

4475: “sched” always “swaps in” the text segment
before the data segment i.e. there is no mech-
anism for bringing the text segment into main
memory once the data segment is present. If
the text segment is not in main memory, get
back into step by “swapping out” the data
segment to disk.

It will be noted that the code to handle text
segments is very conservative whenever the situa-
tion starts to get complicated. For example, the
“panic” (4451) when no more text entries are avail-
able would seem to be a rather extreme reaction.
However the strategy of being generous with “text”
array space is quite likely to be less expensive than
the code needed to do “better”. What do you
think?
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14.5 xfree (4398)

“xfree” is called by “exit” (3233); when a process
is being terminated, and by “exec” (3128), when a
process is being transmogrified.

4402: Set the text pointer in the “proc” entry to
“NULL”;

4403: Decrement the main memory count and if it
is now zero ...

4406: and if the text segment has not been flagged
to be saved, ...

4408: Abandon the image of the text segment in
the disk swap area;

4411: Call “iput” (7344) to decrement the “inode”
reference count and if necessary delete it.

“ISVTX” (5695) is a mask which defines the
“sticky bit” mentioned in section “CHMOD(I)” of
the UPM. If this bit is set, the disk copy of the text
segment is allowed to remain in the disk swap area
even when no programs are running which reference
it, in the expectation that it will be required again
shortly. This is an efficient device for commonly
used programs such as the “shell” or the editor.



15 Introduction to Basic I/O

There are three files whose contents need to be
thoroughly absorbed before the subject of UNIX
input/output is broached in detail.

15.1 The File ‘buf.h’

This file declares two structures called “buf” (4520)
and “devtab” (4551). Instances of the structure
“buf” are declared as ’bireelist (4567) and as the
array “buf” (!) (4535) with “NBUF” elements.

The structure “buf” is possibly misnamed be-
cause it is in fact a buffer header (or buffer con-
trol block). The buffer areas proper are allocated
separately and declared (4720) as

‘‘char buffers [NBUF] [514];°’’

Pointers from the “buf” array to the “buffers”
array are set up by the procedure “binit”.

Other instances of the structure “buf” are de-
clared as “swbuf” (4721) and “rrkbuf” (5387).
No 514 character buffer areas are associated with
“bfreelist” or “swbuf” or “rrkbuf”.

The “buf” structure may be divided into three
parts:

(a) flags These convey status information and are
contained within a single word. Masks for
setting these flags are defined as “B_WRITE”,
“B_READ” etc. in lines 4572 to 4586.

(b) list pointer Forward and backward pointers
for two doubly linked lists, which we shall re-
fer to as the “b”-list and the “av”-list.

(c) i/o parameters A set of values associated
with the actual data transfer.

15.2 devtab (4551)

The “devtab” structure has five words, the last four
of which are forward and backward pointers.

One instance of “devtab” is declared within the
device handler for each block type of peripheral de-
vice. For our model system the only block device
is the RK05 disk, and “rktab” is declared as a “de-
vtab” structure at line 5386.

The “devtab” structure contains some status in-
formation for the the device and serves as a list head
for:

(a) the list of buffers associated with the device,
and simultaneously on the “av”-list;

(b) the list of outstanding i/o requests for the de-
vice.

15.3 The File ‘conf.h’
The file “conf.h” declares:

e yet another way to dissect an integer into two
parts (“d_minor” and “d_major”). Note that
“d_major” corresponds to “hibyte” (0180);

e two arrays of structures;

e two integer variables, “nlkdev” and “nchrdev”.

The two arrays of structures, “bdevsw” and
“cdevsw”, are declared but not dimensioned or ini-
tialised in “conf.h”. The initialisation of these ar-
rays is performed in the file “conf.c”.

15.4 The File ‘conf.c’

This file, along with “low.s”, is generated individu-
ally at each installation (to reflect the set of periph-
erals actually installed) by the program “mkconf”.
(In our case, “conf.c” reflects the representative de-
vices for our model system.)

This file initialises the following:

bdevsw (4656)
cdevsw (4663) swplo
rootdev (4635) nswap

swapdev (4696)
(4637)
(4698)

15.5 System Generation

System generation at a UNIX installation consists
mainly of:

e running “mkconf” with appropriate input;

e recompiling the output files (created as “c.c”
and “l.s”);

e reloading the system with the revised object
files.

This process only takes a few minutes (not the
several hours of some other operating systems).
Note that “bdevsw” and “cdevsw” are defined dif-
ferently in “conf.c” from elsewhere, namely as a one
dimensional array of pointers to functions which re-
turn integer values. This quietly ignores the fact
that, for example, “rktab” is not a function, and
relies on the linking program not to enquire too
closely into the nature of the work which it is per-
forming.

15.6 swap (5196)

Before plunging into all the detail of the file “bio.c”,
it will be instructive as well as convenient to ex-
amine one routine which was introduced earlier,
namely “swap”.
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The buffer head “swbuf” was declared to control
swapping input/output, which must share access to
the disk with other activity. No element of “buffers”
is associated with “swbuf”. Instead the core area
occupied (or to be occupied) by the program serves
as the data buffer.

5200: The address of the flags in “swbuf” is trans-
ferred to the register variable “fp” for conve-
nience and economy;

5202: The “B_.BUSY” flag is tested, and if it is on,
a swap operation is already under way, so that
the “B_WANTED?” flag is set and the process
must wait via a call on “sleep”.

Note that the code loop on lines 5202 to 5205
runs at priority level six, i.e. one higher than the
disk interrupt priority.

Can you see why this is necessary? Under what
conditions will the “B_.BUSY” flag be set?

5206: The flags are set to reflect:

o “swbuf” is in use (“B.BUSY”);

e physical i/o implying a large transfer di-
rect to/from the user data segment
(“B_PHYS");

e whether the operation is read or write.
(“rdflg” is a parameter to “swap”);

5207: The “b_dev” field is initialised. (Presumably
this could have been performed once during
initialisation rather than every time “swbuf”
is used, i.e. in “binit”.);

5208: “b_wcount” is initialised. Note the negative
value and the effective multiplication by 32;

5210: The hardware device controller requires a
full physical address (18 bits on the PDP
11/40). The block number of a 32 word block
must be converted into two parts: the low
order ten bits are shifted left six places and
stored as “b._addr”, and the remaining six
high order bits as “bxmem”. (On the PDP
11/40 and 11/45 only two of these bits are
significant.);

5212: A mouthful at first glance! Shift “swapdev”
eight places to the right to obtain the major
device number. Use the result to index “bde-
vsw”. From the structure thus selected, ex-
tract the strategy routine and execute it with

the address of “swbuf” passed as a parameter;
5213: Explain why this call on “spl6” is necessary;

5214: Wait until the i/o operation is complete.
Note that the first parameter to “sleep” is in
effect the address of “swbuf”;
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5216: Wakeup those processes (if any) which are
waiting for “swbuf”;

5218: Reset the process or priority to zero, thus
allowing any pending interrupts to “happen”;

5219: Reset both the “B_BUSY” and “B_WANTED”
flags.

15.7 Race Conditions

The code for “swap” has a number of interesting
features. In particular it displays in microcosm the
problems of race conditions when several processes
are running together.

Consider the following scenario:

No swapping is taking place when process A ini-
tiates a swapping operation. Denoting “swbuf.b_flags”
by simply “flags”, we have initially

flags == null

Process A is not delayed at line 5204, initiates its
i/o operation and goes to sleep at line 5215. We
now have

flags == B_BUSY | B_PHYS | rdflg

which was set at line 5206.

Suppose now while the i/o operation is pro-
ceeding, process B also initiates a swapping opera-
tion. It too begins to execute “swap”, but finds the
“B_BUSY” flag set, so it sets the “B_.WANTED”
flag (5203) and goes to sleep also (5204). We now
have

flags == B_BUSY | B_PHYS | rdflg | B_WANTED

At last the i/o operation completes. Pro-
cess C takes the interrupt and executes “rkintr”,
which calls (5471) “iodone” which calls (5301)
“wakeup” to awaken process A and process B.
“iodone” also sets the “B_DONE” flag and resets
the “B_.WANTED” flag so that

flags == B_BUSY | B_PHYS | rdflg | B_DONE

What happens next depends on the order in
which process A and process B are reactivated.
(Since they both have the same priority, “PSWP”,
it is a toss-up which goes first.)

Case (a): Process A goes first. “B.DONE” is set
so no more sleeping is needed. “B_-WANTED”
is reset so there is no one to “wakeup”. Pro-
cess A tidies up (5219), and leaves “swap”
with

flags == B_PHYS | rdflg | B_DONE



Process B now runs and is able to initiate its
i/o operation without further delay.

Case (b): Process B goes first. It finds “B_BUSY”
on, so it turns the “B_.WANTED” flag back
on, and goes to sleep again, leaving

flags == B_BUSY | B_PHYS | rdflg |
B_DONE | B_WANTED

Process A starts again as in Case (a), but
this time finds “B_.WANTED” on so it must
call “wakeup” (5217) in addition to its other
chores. Process B finally wakes again and the
whole chain completes.

Case (b) is obviously much less efficient than
case (a). It would seem that a simple change to
line 5215 to read

sleep (fp, PSWP-1);

would cost virtually nothing and ensure that Case
(b) never occurred!

The necessity for the raising of processor prior-
ity at various points should be studied: for exam-
ple if line 5201 was omitted and if process B had
just completed line 5203 when the “i/o complete”
interrupt occurred for Process A’s operation, then
“iodone” would turn off “B_-WANTED” and per-
form “wakeup” before process B went to sleep ...
forever! A bad scene.

15.8 Reentrancy

Note also the assumption made above, that both
process A and process B could execute “swap” si-
multaneously. All UNIX procedures are in general
“re-entrant” (which means multiple simultaneous
executions are possible). How would UNIX have to
change if re-entrancy were not allowed?

15.9 For the Uninitiated

We can now return to complete an investigation
started in Chapter Eight concerning “aretu” and
“u.u_ssav”:

After setting “u.u_ssav” (2284), “expand” calls
(2285) “xswap”, which calls (4380) “swap”, which
calls (5215) “sleep”, which calls (2084) “swtch”,
which resets “u.u_rsav”’ (2189).

Thus in fact “u.u_rsav” finally gets reset to a
value appropriate to four procedure calls deeper
than that for “u.u_ssav”.

15.10 Additional Reading

The article “The UNIX I/O System” by Dennis
Ritchie is highly pertinent.
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16 The RK Disk Driver

The RK disk storage system employs a remov-
able disk cartridge containing a single disk, which
is mounted inside a drive with moving read/write
heads.

The device designated RK11-D consists of a disk
controller together with a single drive. Additional
drives, designated RK05, up to a total of seven,
may be added to a single RK11-D.

A requirement for more than eight drives would
require an additional controller with a different set
of UNIBUS addresses. Also the code in the file
“rk.c” would have to be modified to handle the case
of two or more controllers. This case is most un-
likely because requirements for large amounts of on-
line disk storage will be more economically provided
otherwise e.g. by the RP04 disk system.

Cartridge capacity: 1,228,800 words
(4800 512 byte records)
Surfaces/cartridge: 2
Tracks/surface: 200 (plus 3 spare)
Sectors/Track: 12
Words/Sector: 256
Recording density: 2040 bpi maximum
Rotation speed: 1500 rpm
Half revolution: 20 msecs
Track positioning;:
10 msecs (one track)
50 msecs (average)
85 msecs (worst case)
Interrupt Vector Address: 220
Priority Level: 5

Unibus Register Addresses

Drive Status RKDS 777400
Error RKER 777402
Control Status RKCS 777404
Word Count RKWC 777406
Current bus address RKBA 777410
Disk address RKDA 777412
Data Buffer RKDB 777416

Table 16.1 RK Vital Statistics

The average total access time is 70 milllseconds.
With multi-drive subsystems, seeking by one drive
may be overlapped with reading or writing by an-
other drive. However this feature is not used by
UNIX because of bugs which existed at one time in
the hardware controller.

In initiating a data transfer, RKDA, RRBA and
RKC are set, and then RKCS is set. Upon com-
pletion, status information is available in RKCS,
RRER and RKDS. When an error occurs, UNIX
simply calls “deverror” (2447) to display RKER
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and RKDS on the system console, without any at-
tempt at analysis. An operation is repeated up to
ten times before an error is reported by the device
driver.

The register formats which are described fully in
the “PDP11 Peripherals Handbook” are reflected in
the program code at several points. The following
summaries suffice to describe the features used by

UNIX:
Control Status Register (RKCS)

bit description
15  Set when any bit of RKER (the
Error Register) is set;

7 Set when the control is no
longer engaged in actively
executing a function and is ready
to accept a command;

6 When set, the control will issue
an interrupt to vector address
220 upon operation completion or
error;

54 Memory Extension. The two most
significant bits of the 13 bit
physical bus address. (The other
16 bits are recorded in RKBA.);

3-1 Function to be performed:

CONTROL RESET: 000
WRITE: 001

READ: 010

etc.,

0 Initiate the function designated
by bits 1 to 3 when set. (write
only);

Word Count Register (RKWC)
Contains the twos complement of the number of
words to be transferred.

Disk Address Register (RKDA)
bit description

15-13 Drive number (0 to 7)

12-5  Cylinder number (0 to 199)

4 Surface number (0,1)

3-0 Sector address (0 to 11)

16.1 The file ‘rk.c’

This file contains the code which is specific to the
RK disk system, i.e. which is the RK “device
driver”.



16.2 rkstrategy (5389)

The strategy routine is called, e.g. from “swap”
(5212), to handle both read and write requests.

5397: The test and call on “mapalloc” here is a
“no-op” except on the PDP11/70 system;

5399: The code from here to line 5402 appears to
be unnecessarily devious! See the discussion
of “rkaddr” below. If the block number is
too large, set the “B_.ERROR” flag and report
“completion”;

5407: Link the buffer into a FIFO list for the con-
troller. The list is singly linked, uses the
“av_forw” pointer of the “buf” structures, and
has head and tail pointers in “rktab”. Inter-
rupts from disk devices may not be allowed
after the first step;

5414: If the RK controller is not currently active,
wake it up via a call on “rkstart” (5440),
which checks that there is something to do
(5444), flags the controller as busy (5446) and
calls “devstart” (5447), passing as parame-
ters:

e 3 pointer to the first enqueued buffer
header;

e the address of the RKDA disk address
register. (The value passed is in effect
0177412. See lines 5363, 5382.);

e 3 “disk address” computed by “rkaddr”;

o zero (not really important in our discus-
sion, and may be ignored).

16.3 rkaddr (5420)

The code in this procedure incorporates a special
feature for files which extend over more than one
disk drive. This feature is described in the UPM
Section “RK(IV)”. Its usefulness seems to be re-
stricted.

The value returned by “rkaddr” is formatted for
direct transmission to the control register, RKDA.

16.4 devstart (5096)

This procedure when called for the RK disk loads
appropriate values into the registers RKDA, RKBA,
RKWC and RKCS in succession. Only the last
value needs to be computed at this stage.

The calculation, though messy in appearance,
is straight forward. Note that “hbcom” is zero and
“rbp->b_xmem” contains the two high order bits
of the physical core address. The loading of RKCS
initialises the disk controller i.e. the operation is
now entirely under the control of the hardware.

“devstart” returns to “rkstart” (5448), which
returns to “rkstrategy” (5416), which resets the
processor priority and returns to “swap” (5213),
which ...

16.5 rkintr (5451)

This procedure is invoked to handle the interrupts
which occur when RK disk operations are com-
pleted.

5455: Check for a false alarm!
5459: Inspect the error bit; if set ...

5460: Call “deverror” (2447) to display a message
on the system console terminal;

5461: Clear the internal registers of the disk con-
troller and ...

5462: Wait till this is completed (usually a few mi-
croseconds);

5463: If the operation has been retried less than
ten times, call “rkstart” to try again. Other-
wise give up and report an error;

5469: Set the “retry” (!) count back to zero, re-
move the current operation from the “actf”
list, and complete the operation by calling
“iodone”;

5472: “rkstart” is called unconditionally here. If
the call is not necessary (because the “actf”
list is empty) “rkstart” will return immedi-
ately (5444).

16.6 iodone (5018)

This routine is primarily concerned with the return
of resources when a block i/o operation has com-
pleted. It:

o frees up the Unibus map (for 11/70’s, if ap-
propriate);

o sets the “B_DONE” flag;

e releases the buffer if the i/o was asynchronous,
or else resets the “B_.WANTED” flag and
wakes up any process waiting for the i/o op-
eration to complete.
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17 Buffer Manipulation

In this chapter we look at the file “bio.c” in de-
tail. It contains most of the basic routines used to
manipulate buffer headers and buffers (4535, 4720).

Individual buffer headers are tagged by a de-
vice number “b_dev”, (4527) and a block number
“b_blkno”, (4531). (Note the way in which the lat-
ter is declared as an unsigned integer.)

Buffer headers may be linked simultaneously
into two lists:

the “b”-lists are lists, one per device controller,
which link together buffers associated with
that device type;

the “av”-list is a list of buffers which may be de-
tached from their current use and converted
to an alternate use.

Both the “av”-list and the various “b”-lists are
doubly linked to facilitate insertion and deletion at
any point.

17.1 Flags

If a buffer is withdrawn temporarily from the “av”-
list, then its “B.BUSY” flag is raised.

If the contents of a buffer correctly reflect the
information that is or should be stored on disk, then
the “B_.DONE” flag is raised.

If the “B_DELWRI” flag is raised, the contents
of the buffer are more up to date than the con-
tents of the corresponding disk block, and hence
the buffer must be written out before it can be re-
assigned.

17.2 A Cache-like Memory

It will be seen that the large buffers in UNIX are
manipulated in a way which is analogous to the
operation of hardware cache attached to the main
memory of a computer e.g. the PDP11/70.

Buffers are not assigned to any particular pro-
gram or file, except for very short intervals at a
time. In this way a relatively small number of
buffers can be shared effectively amongst a large
number of programs and files.

Information is left in the buffers until the buffer
is needed i.e. immediate “write through” is avoided
if only part of the buffer has recently been changed.
Programs which read or write records which are
small compared with the buffer size are then not
penalised unduly.

Finally when programs are terminated and files
are closed, the problems of ensuring that the pro-
gram’s buffers are flushed properly (problems which
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have plagued other operating systems) have largely
disappeared.

There is one area of practical concern: if the
decision “when to write” is left to the operating
system alone, then some buffers may not be writ-
ten out for a very long time. Accordingly there is
a utility program which runs twice per minute and
forces all such buffers to be written out uncondi-
tionally. This limits the likely amount of damage
that a sudden system crash may cause.

17.3 clrbuf (5038)

This routine zeros out the first 256 words (512
bytes) of the buffer. Note that the parameter
passed to “clrbuf” is the address of the buffer
header. “clrbuf” is called by “alloc” (6982).

17.4 incore (4899)

This routine searches for a buffer that is already as-
signed to a particular (device, block number) pair.
It searches the circular “b”-list whose head is the
“devtab” structure for the device type. If a buffer is
found, the address of the buffer header is returned.
“incore” is called by “breada” (4780, 4788).

17.5 getblk (4921)

This routine performs the same search as “incore”
but goes further in that if the initial search is un-
successful, a buffer is allocated from the “av”-list
(available list).

By a call on “notavail” (4999), the buffer is re-
moved from the “av”-list and flagged as “B_.BUSY”.

“getblk” is more suspicious of its parameters
than “incore”. It is called by

exec (3040) writei (6304)
exit  (3237) iinit (6928)
bread (4758) alloc (6981)
breada (4781,4789) free (7016)
smount (6123) update (7216)

4940: At this point the required buffer has been
located by searching the “b”-list. Either it
is “B_.BUSY” in which case a “sleep” must be
taken (4943), or else it is appropriated (4948);

4953: If the required buffer has not been located,

and if the “av”-list is empty, set the “B_.WANTED”

flag for the “av”-list and go to “sleep” (4955);

4960: If the “av”-list is not empty, select the first
member, and if it represents a “delayed write”
arrange to have it written out asynchronously

(4962);
4966: “B_RELOC” is a relic! (See 4583);



4967: The code from here until 4973 uncondition-
ally removes the buffer from the “b”-list for
its current device type and reinserts it into the
bn-list for the new device type. Since this will
frequently be a “no-op” i.e. the new and old
device type will be the same, it would seem
desirable to insert a test

if (bp->b_dev == dev)

before executing lines 4967 to 4974.

Note the special handling for calls where
“dev == NODEV” (-1). (Such calls inciden-
tally are made without a second parameter -
tut! tut! See e.g. 3040.)

“bfreelist” serves as the “devtab” structure for
the “b”-list for “NODEV”.

17.6 brelse (4869)

This procedure takes the buffer passed as a param-
eter and links it back into the “av”-list.

Any process which is either waiting for the par-
ticular buffer or any available buffer is woken up.

Note however that since both “sleeps” (4943,
4955) are at the same priority, if two processes are
waiting — one for the particular buffer and one for
any buffer — it will be a toss-up which will get it.

By giving the first priority over the second (e.g.
by biasing by one) the race should be resolved more
satisfactorily. The disadvantage of such a change
might be that it could lead to a deadlock situation
in certain rather peculiar circumstances.

If an error has occurred e.g. upon reading in-
formation into the buffer the information in the
buffer may be incorrect. The assignment on line
4883 ensures that the information in the buffer
will not be mistakenly retrieved subsequently. The
“B_.ERROR” flag is set e.g. by “rkstrategy” (5403)
and “rkintr” (5467).

To see how this could occur, consider what hap-
pens to a buffer when a disk i/o operation is com-
pleted:

5471 “rkintr” calls “iodone”;
5026 “iodone” sets the “B_.DONE” flag;
5028 “iodone” calls “brelse”;

4387 “brelse” resets the “B_.WANTED”, “B_BUSY”
and “B_ASYNC?” flags but not the “B_DONE”
flag;

4948 “getblk” finds the buffer and calls “notavail”;
5010 “notavail” sets the “B_.BUSY” flag;

4759 “bread” (which called “getblk”) finds the
“B_DONE” flag set and exits.

Note that buffer headers are removed from
the “av”-list by “notavail” and are returned by
“brelse”. Buffer headers are moved from one “b”-
list to another by “getblk”.

17.7 binit (5055)

This procedure is called by “main” (1614) to ini-
tialise the buffer pool. Empty, doubly linked circu-
lar lists are set up:

e for the “av”-list (“bfreelist” is head);

e the “b”-list for null devices (“dev == NODEV”)
(“bfreelist” is again head);

e a “b”-list for each major device type.
For each buffer:

e the buffer header is linked into the “b”-list for
the device “NODEV” (-1);

e the address of the buffer is set in the header
(5067);

o the buffer flags are set as “B.BUSY” (this
doesn’t seem to be really necessary) (5072);

e the buffer header is linked into the “av”-list
by a call on “brelse” (5073);

The number of block devices is recorded as
“nblkdev”. This is used for checking values for
“dev” in “getblk” (4927), “getmdev” (6192) and
“openi” (6720). Inspection of “bdevsw” (4656)
shows that “nblkdev” will be set to eight whereas
the value one is what is really required.

This result could be obtained by “editing” as
follows:

/5084/m/5081/ "nblkdev=i;
/5083/m/5077/ "i++

17.8 bread (4754)

This is the standard procedure for reading from
block devices. It is called by:

wait (3282) iinit (6927)
breada (4799) alloc (6973)
statl (6051) ialloc (7097)
smount (6116) iget  (7319)
readi (6258) iupdat (7386)

writei (6305) itrunc (7426, 7431)
bmap  (6472,6488) namei (7625)

“getblk” finds a buffer. If the “B.DONE” flag
is set no i/o is needed.
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17.9 breada (4773)

This procedure has an additional parameter, as
compared with “bread”. It is called only by “readi”
(6256).

4780: Check if the desired block has already been
assigned to a buffer. (It may not yet be avail-
able, but at least is it there?);

4781: If not initiate the necessary read operation
but don’t wait for it to finish;

4788: Look around for the “read ahead” block. If
it is not there, allocate a buffer (4789) but
release it (4791) if the buffer is already ready;

4793: The “read ahead” block is not ready, so ini-
tiate an asynchronous read operation;

4798: If a buffer was assigned to the current block
call “bread” to wrap it up, else...

4800: Wait for the completion of the operation
which was started at line 4785.

17.10 bwrite (4809)

This is the standard procedure for writing to block
devices. It is called by “exit” (3239), “bawrite”
(4863), “getblk” (4963), “bflush” (5241), “free”
(7021), “update” (7221) and “iupdat” (7400). N.B.
“writei” calls “bawrite” (6310)!

4820: If the “B_ASYNC” flag is not set, the pro-
cedure does not return until the i/o operation
is completed;

4823: If the “B_ASYNC?” is set, but “B DELWRI”
was not set (note “flag” is set at line 4816)
call “geterror” (5336) to check on the error
flag. (If “B_DELWRI” was set, and there is
an error, sending the error indication to the
right process is “too hard.”). The call (4824)
on “geterror” will only report errors related
to the initiation of the write operation.

17.11 bawrite (4856)

This procedure is called by “writei” (6310) and “bd-
write” (4845). “writei” calls either “bawrite” or
“bdwrite” depending on whether the block to be
written has been wholly or partially filled.

17.12 bdwrite (4836)

This procedure is called by “writei” (6311) and
“brmap” (6443, 6449, 6485, 6500 and 6501 !).

4844: Don’t delay the write if the device is a mag-
netic tape drive ... keep everything in order;
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4847: Set the “B_.DONE”, “B_.DELWRI” flags and
call “brelse” to link the buffer into the “av”-
list.

17.13 bflush (5229)

This procedure is called by “update” (7201), which
is called by “panic” (2420), “sync” (3489) and
“sumount” (6150).

“bflush” searches the “av”-list for “delayed write”
blocks and forces them to be written out asyn-
chronously.

Note that as “notavail” adjusts the links of the
“av”-list, the search (which runs at processor pri-
ority six) is reinitiated after each “delayed write”
block is encountered.

Note also that since it happens that “bflush”
is only called by “update” with “dev” equal to
“NODEV”, line 5238, in particular, could be sim-
plified.

17.14 physio (5259)

This routine is called to handle “raw” input/output
i.e. operations which ignore the normal 512 char-
acter block size.

“physio” is called by “rkread” (5476) and “rk-
write” (5483) which appear as entries in the array
“cdevsw” (4684)

“Raw i/0” is not an essential feature of UNIX.
For disk devices it is used mainly for copying whole
disks and checking the integrity of the file system
as a whole (see e.g. ICHECK (VIII) in the UPM),
where it is convenient to read whole tracks, rather
than single blocks, at a time.

Note the declaration of “strat” (5261). Since
the actual parameter used e.g. “rkstrategy” (5389)
does not return any value, is this form of declaration
really necessary?



Section Four

Section Four is concerned with files and file sys-
tems.

A file system is a set of files and associated tables
and directories organised onto a single storage device
such as a disk pack.

This section covers the means of creating and ac-
cessing files, locating files via directories, and organ-
ising and maintaining file systems.

It also includes the code for an exotic breed of file
called a “pipe”.

18 File Access and Control

A large part of every operating system seems to be
concerned with data management and file manage-
ment, and UNIX turns out to be no exception.
Section Four of the source code contains thirteen
files.
The first four contain common declarations
needed by various of the other routines:

“file.h” describes the structure of the “file” array;

“filsvs.h” describes the structure of the “super
block” for “mounted” file systems;

“ino.h” describes the structure of “inodes” recorded
on “mounted” devices;

“inode.h” describes the structure of the “inode”
array;

The next two files, “sys2.c” and “sys3.c” contain
code for system calls. (“sysl.c” and “sys4.c” were
presented in Section Two).

Tne next five files, “rdwri.c”, “subr.c”, “fio.c”,
“alloc.c” and “iget.c”, together present the princi-
pal routines for file management, and provide a link
between the i/o oriented system calls and the basic
i/o routines.

The file “nami.c” is concerned with searching
directories to convert file pathnames into “inode”
references.

Finally, “pipe.c” is the “device driver” for pipes.

18.1 File Characteristics

A UNIX file is conceptually a named character
string, stored on one of a variety of peripheral de-
vices (or in the main memory), and accessible via
mechanisms appropriate to the usual peripheral de-
vices.

It will be noted that there is no record struc-
ture associated with UNIX files. However “new-
line” characters may be inserted into the file to de-
fine substrings analogous to records.

UNIX carries the ideas of device independence
to their logical extreme by allowing the file name in
effect to determine uniquely all relevant attributes
of the file.

18.2 System Calls

The following system calls are provided expressly
for file manipulation:

# Name Line # Name Line
3 read 5711 14 mknod 5952
4  write 5720 15 chmod 3560
5  open 5765 16 chown 3575
6 close 5846 19 seek 5861
8 creat 5781 21  mount 6086
9 link 5909 22 umount 6144
10 unlink 3510 41 dup 6069
12 chdir 3538 42 pipe 7723

18.3 Control Tables

The arrays “file” and “inode” are essential compo-
nents of the file access mechanism.

18.4 file (5507)

The array “file” is defined as an array of structures
(also named “file”).

An element of the “file” array is considered to
be unallocated if “f_count” is zero.

Each “open” or “creat” system call results in the
allocation of an element of the “file” array. The ad-
dress of this element is stored in an element of the
calling process’s array “u.u-ofile”. It is the index
of the newly allocated element of the latter array
which is passed back to the user process. Descen-
dants of a process created by “newproc” inherit the
contents of the parent’s “u.u_ofile” array.

Each element of “file” includes a counter, “f_count”,

to determine the number of current processes which
reference it.

“f_count” is incremented by “newproc” (1878),
“dup” (6079) and “falloc” (6857); it is decremented
by “closef” (6657) and (if the file can’t be opened)
by “openl” (5836).

The “fflag” (5509) of the “file” element notes
whether the file is open for reading and/or writing
or whether it is a “pipe” or not. (Further discus-
sion of “pipes” will be deferred till Chapter Twenty-
One.)

The “file” structure also contains a pointer,
“f inode” (5511) to an entry in the “inode” table,
and a 32 bit integer, “f_offset” (5512), which is a
logical pointer to a character within the file.
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18.5 inode (5659)

“inode” is defined as an array of structures (also
named “inode”).

An element of the “inode” is considered to be
unallocated if the reference count, “i_count”, is
Z€ero.

At each point in time, “inode” contains a sin-
gle entry for each file which may be referenced for
normal i/o operations, or which is being executed
or which has been executed and has the “sticky”
bit set, or which is the working directory for some
process.

Several “file” table entries may point to a sin-
gle “inode” entry. The inode entry describes the
general disporition of the file.

18.6 Resources Required

Each file requires the dedication of certain system
resources. When a file exists, but is not being ref-
erenced in any way, it requires:

(a) a directory entry (16 characters in a directory
file);

(b) a disk “inode” entry (32 characters in a table
stored on the disk);

(c¢) zero, one or more blocks of disk storage (512
characters each).

In addition if the file is being referenced for some
purpose, it requires

(d) a core “inode” entry (32 characters in the “in-
ode” array);

Finally if a user program has “opened” the file for
reading or writing, a number of resources are re-
quired:

(e) a “file” array entry (8 characters);

(f) an entry in the user program’s “u.u_ofile” array
one word per file, pointing to a “file” arra;
( p ;P g y
entry);

Mechanisms have to be set up for allocating and
deallocating each of these resources in an orderly
manner. The following table gives the names of the
principal procedures involved:

resource obtain free
directory entry namei  namei
disk “inode” entry ialloc ifree
disk storage block alloc free
core “inode” entry iget iput
“file” table entry falloc closef
“u_ofile” entry ufalloc  close
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18.7 Opening a File

When a program wishes to reference a file which
already exists, it must “open” the file to create a
“bridge” to the file. (Note that in UNIX, processes
usually inherit the open files of their parents or pre-
decessors, so that often all needed files are already
implicitly open.) If the file does not already exist,
it must be “created”.
This second case will be investigated first:

18.8 creat (5781)

5786: “namei” (7518) converts a pathname into an
“inode” pointer. “uchar” is the name of a pro-
cedure which recovers the pathname, charac-
ter by character, from the user program data
area;

5787: A null “inode” pointer indicates either an
error or that no file of that name already ex-
ists;

5788: For error conditions, see “CREAT (II)” in
the UPM,;

5790: “maknode” (7455) creates a core “inode” via
a call on “ialloc” and then initialises it and
enters it into the appropriate directory. Note
the explicit resetting of the “sticky” bit

18.9 openl (5804)

This procedure is called by “open” (5774) and
“creat” (5793, 5795), passing values of the third
parameter, “trf”, of 0, 2 and 1 respectively. The
value 2 represents the case where no file of the de-
sired name already exists.

5812: The second parameter, “mode”, can take
the values 01 (“FREAD”), 02 (“FWRITE”)
or 03 (“FREAD | FWRITE”) when “trf” is
0, but only 02 otherwise;

Whete a file of the desired name already ex-
ists, check the access permissions for the de-
sired mode(s) of activity via calls on “access”
(6746), which may set “u.u_error” as a side-
effect;

5824: If the file is being “created”, eliminate its
previous contents via a call on “itrunc” (7414).
The code here could be improved by chang-
ing the test to “(trf == 1)”. Verify that this
would be so.

5826: “prele” (7882) is used to “unlock” “inodes”.
Where, you may ask, did the “inode” get
“locked”, and why?



5827: Note that “falloc” (6847) calls “ufalloc”
(6824) as the first thing it does;

5831: “ufalloc” leaves the user file identifying num-
ber “u.u_arO[R0]”. Why does this statement
occur where it does, instead of after line 58347

5832: “openi” (6702) is called to call handlers for
special files, in cae any device specific actions
are required (for disk files there is no action);

5839: In the case of an error while making the
“file” array entry, the “inode” entry is re-
leased by a call on “iput”.

It will be seen that responsibility is quite widely
distributed. The “file” table entry is initialised by
“falloc” and “openl”; the “inode” table entry, by
“iget”, “ialloc” and “maknode”.

Note that “ialloc” clears out the “i_addr” array
of a newly allocated “inode” and “itrunc” does the
same for a pre-existing “inode”, so that after the
“creat” system call, there are no disk blocks asso-
ciated with the file, now classed as “small”.

18.10 open (5763)

We now turn to consider the case where a program
wishes to reference a file which already exists.

“namei” is called (5770) with a second param-
eter of zero to locate the named file. (“u.u_arg[0]”
contains the address in the user space of a character
string which defines a file path name.)

“u.u_arg[1]” has to be incremented by one, be-
cause there is a mismatch between the user pro-
gramming conventions and the internal data repre-
sentations.)

18.11 openl revisited

“trf” is now zero, so access permissions are checked
(5813) but the existing file (if any) is not deallo-
cated (5824).

What is a little disconcerting here is that, apart
from the call on “falloc” (5827), there is no direct
call on any of the “resource allocation” routines.
Of course, for an existing file, neither directory en-
try nor disk “inode” entry nor disk blocks need be
allocated. The core “inode” entry is allocated (if
necessary) as a side-effect of the call on “namei”,
but ... where is it initialised?

18.12 close (5846)

The “close” system call is used to sever explicitly
the connection between a user program and a file
and thus can be regarded as the inverse of “open”.

The user program’s file identification is passed
via r0. The value is validated by “getf” (6619), the

“u.u_ofile” entry is erased, and a call is made on
“closef”.

18.13 closef (6643)

“closef” is called by “close” (5854) and by “exit”
(3230). (The latter is more common since most
files do not get closed explicitly but only implicitly
when the user program terminates.)

6649: If the file is a pipe, reset the mode of the
pipe and “wakeup” any process which is wait-
ing for the pipe, either for information or for
space;

6655: If this is the last process to reference the file,
call “closei” (6672) to handle any special end
of file processing for special files and then call
“iput” ;

6657: Decrement the “file” entry reference count.
If this now zero, the entry is no longer allo-
cated.

18.14 iput (7344)

“closei”, as its last action calls “iput”. This routine
is in fact called from many places, whenever a con-
nection to a core “inode” is to be severed and the
reference count decremented.

7350: If the reference count is one at this point,
the “inode” is to be released. While this is
happening, it should be locked.

7352: If the number of “links” to the file is zero (or
less) the file is to be deallocated (see below);

7357: “lupdat” (7374) updates the accessed and
update times as recorded on the disk “inode”;

7358: “prele” unlocks the “inode”. Why should it
be called here as well as at line 73637

18.15 Deletion of Files

New files are automatically entered into the file
directory as permanent files as soon as they are
“opened”. Subsequent “closing” of a file does not
automatically cause its deletion. As was seen at line
7352, deletion will occur when the field “i_nlink” of
the core “inode” entry is zero. This field is set to
one initially by “maknode” (7464) when the file is
first created. It may be incremented by the system
call “link” (5941) and decremented by the system
call “unlink” (3529).

Programs which create temporary “work files”
should remove these files before terminating, by ex-
ecuting an “unlink” system call. Note that the “un-
link” call does not of itself remove the file. This can
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only happen when the reference count (“i-count”)
is about to be decremented to zero (7350, 7362).

To minimise the problems associated with “tem-
porary” files which survive program or system
crashes, programmers should observe the conven-
tions that:

(a) temporary files should be “unlinked” immedi-
ately after they are opened;

(b) temporary files should always be placed in the
“tmp” directory. Unique file names can be
generated by incorporating the process’s iden-
tifying number into the file name (See “get-
pid” (3480)).

18.16 Reading and Writing

It is of interest to work through an abbreviated
summary of the code which is invoked when a user
process performs a “read” system call before exam-
ining the code in detail.

. read (f, b, n); /*user program/

{trap occurs}
2693 trap

{system call #3}
5711 read ();
5713 rdwr (PREAD);

Execution of the system call by the user process
results in the activation of “trap” running in ker-
nel mode. “trap” recognises system call #3, and
calls (via “trapl”) the routine “read”, which calls
“rdwr”.

5731 rdwr

5736 fp = getf (u.u_arO[RO];

5743 u.u_base = u.u_arg[0];

5744 u.u_count = u.u_arg[1];

5745 u.u_segflg = 0;

5751 u.u_offset[1] = f2->f offset[1];

5752 u.u_offset[0] = fp->f offset[0];

5754 readi(fp->f inode);

5756 dpadd(fp->f offset,
u.u_arg[1]-u.u_count);

“rdwr” includes much code which is common to
both “read” and “write” operations. It converts,
via “getf” (6619), the file identification supplied by
the user process into the address of an entry in the
“file” array.

Note that the first parameter of the system call
is passed in a different way from the remaining two
parameters.
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“u.u_segflg” is set to zero to indicate that the
operation destination is in the user address space.
After “readi” is called with a parameter which is an
“inode” pointer, the final accounting is performed
by adding the number of characters requested for
transfer less the residual number not transferred
(left in “u.u_count”) to the file offset.

6221 readi
6239 1bn = 1lshift (u.u_offset, -9);

6240 on = u.u_offset[1] & 0777;
6241 n = min (512 - on, u.u_count);

6248 bn = bmap(ip, lbn);
6250 dn = ip->i_dev;
6258 bp = bread (dn, bn);

6260 iomove (bp, on, n, B READ);
6261 brelse (bp);

“readi” converts the file offset into two parts:
a logical block number, “lbn”, and an index into
the block, “on”. The number of characters to be
transferred is the minimum of “u.u_count” and the
number of characters left in the block (in which case
additional block(s) must be read (not shown)) (and
the number of characters remaining in the file (this
case is not shown)).

“dn” is the device number which is stored within
the “inode”. “bn” is the actual block number on the
device (disk), which is computed by “bmap” (6415)
using “lbn”.

The call on “bread” finds the required block,
copying it into core from disk if necessary. “iomove”
(6364) transfers the appropriate characters to their
destination, and performs accounting chores.

18.17 rdwr (5731)

“read” and “write” perform similar operations and
share much code. The two system calls, “read”
(5711) and “write” (5720), call “rdwr” immediately
to:

5736: Convert the user program file identification
to a pointer in the file table;

5739: Check that the operation (read or write) is
in accordance with the mode with which the
file was opened;

5743: Set up various standard locations in “u”

with the appropriate parameters;

5746: “pipes” get special treatment right from the
start!

5755: Call “readi” or “writei” as appropriate;



5756: Update the file offset by, and set the value
returned to the user program to, the number
of characters actually transferred.

18.18 readi (6221)

6230: If no characters are to be transferred, do
nothing;

6232: Set the “inode” flag to indicate that the “in-
ode” has been accessed;

6233: If the file is a character special file, call the
appropriate device “read” procedure, passing
the device identification as parameter;

6238: Begin a loop to transfer data in amounts up
to 512 characters at a time until (6262) ei-
ther an irrecoverable error condition has been
encountered or the requested number of char-
acters has been transferred;

6239: “Ishift” (1410) concatenates the two words
of the array “u.u_offset”, shifts right by nine
places, and truncates to 16 bits. This defines
the “logical block number” of the file which is
to be referenced;

6240: “on” is a character offset within the block;

6241: “n” is determined initially as the minimum
of the number of characters beyond “on”
in the block, and the number requested for
transfer. (Note that “min” (6339) treats its
arguments as unsigned integers.)

6242: If the file is not a special block file then ...

6243: Compare the file offset with the current file
size;

6246: Reset “n” as the minimum of the characters
requested and the remaining characters in the
file;

6248: Call “bmap” to convert the logical block
number for the file to a physical block num-
ber for its host device. There will be more on
“bmap” shortly. For now, note that “bmap”
sets “rablock” as a side effect;

6250: Set “dn” as the device identification from
the “inode”;

6251: If the file is a special block file then ...

6252: Set “dn” from the “i_addr” field of the “in-
ode” entry. (Presumably this will nearly al-
ways be the same as the “i_dev” field, so why
the distinction?)

6253: Set the “read ahead block” to the next phys-
ical block;

6255: If the blocks of the file are apparently being
read sequentially then ...

6256: Call “breada” to read the desired block and
to initiate reading of the “read ahead block”;

6258: else just read the desired block;

6260: Call “iomove” to transfer information from
the buffer to the user area;

6261: Return the buffer to the “av”-list.

18.19 writei

6303: If less than a full block is being written the
previous contents of the buffer must be read
so that the appropriate part can be preserved,
otherwise just get any available buffer;

6311: There is no “write ahead” facility, but there
is a “delayed write” for buffers whose final
characters have not been changed;

6312: If the file offset now points beyond the
recorded end of file character, the file has ob-
viously grown bigger!

6318: Why is it necessary/desirable to set the
“IUPD” flag again? (See line 6285.)

18.20 iomove (6364)

The comment at the beginning of this procedure
says most of what needs to be said. “copyin”,
“copyout”, “cpass” and “passc” may be found at
lines 1244, 1252, 6542 and 6517 respectively.

18.21 bmap (6415)

A general description of the function of “bmap”
may be found on Page 2 of “FILE SYSTEM (V)”
of the UPM.

6423: Files of more than 2**15 blocks (2*¥*24 char-
acters) are not supported;

6427: Start with the “small” file algorithm (file is
not greater than eight blocks i.e. 4096 char-
acters);

6431: If the block number is 8 or more, the “small”
file must converted into a large file. Note this
is a side effect of “bmap”, and should occur
only when “bmap” has been called by “writei”
(and never by “readi” — see line 6245). Thus
all files start life as “small” files and are never
explicitly changed to “large” files. Note also
that the change is irreversible!
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6435: “alloc” (6956) allocates a block on device
“d” from the device’s free list. It then assigns

a buffer to this block and returns a pointer to
the buffer header;

6438: The eight buffer addresses in the “i_addr”
array for the “inode” are copied into the
buffer area and then erased;

6442: “i_addr[0]” is set to point to the buffer which
is set up for a “delayed” write;

6448: The file is still small. Get the next block if
necessary;

6456: Note the setting of “rablock”;

18.22 Leftovers

You should investigate the following procedures for
yourself:

seek (5861) statl (6045)
sslep (5979) dup (6069)
fstat (6014) owner (6791)
stat (6028) suser (6811)
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19 File Directories and Direc-
tory Files

As we have seen, much important information
about individual files is contained in the “inode”
tables. If the file is currently accessible, or being ac-
cessed, the relevant information is held in the core
“inode” table. If a file is on disk (more generally, on
some file system volume) and is not currently ac-
cessible, then the relevant “inode” table is the one
recorded on the disk (file system volume).

Notably absent from the “inode” table is any
information regarding the “name” of the file. This
is stored in the directory files.

19.1 The Directory Data Structure

Each file must have at least one name. A file may
have more than one distinct name, but the same
name may not be shared by tw distinct files, i.e.
each name must define a unique file.

A name may be multipart. When written, the
parts or components of the name are separated by
slashes (“/”). The order of components within a
name is significant i.e. “a/b/c” is different from
“a/c/b” A

If file names are divided into two parts: an ini-
tial part or “stem” and a final part or “ending”,
then two files whose names have identical stems are
usually relate in some way. They may reside on the
same disk, they may belong to the same user, etc.
Users make initial reference to files by quoting the
file name, e.g. in the “open” system call. An im-
portant operating sysem function is to decode the
name into the corresponding “inode” entry. To do
this, UNIX creates and maintains a directory data
structure. This structure is equivalent to a directed
graph with named edges.

In its purest form, the graph is a tree i.e. it has
a single root node, with exactly one path between
the root and any node. More commonly in UNIX
(but not so commonly in other operating systems)
the graph is a lattice which may be obtained from
a tree by coalescing one or more groups of leaves.

In this case, while there is still only one path
between the root and any interior node, thee may
be more than one path between the root and a leaf.
Leaves are nodes without successors and correspond
to data files. Interior nodes are nodes with succes-
sors and correspond to directory files.

The name for a file is obtained from the names
of the edges of the path between the root and the
node corresponding to the file. (For this reason, the
name is often referred to as a “pathname”.) If there
are several paths, then the file has several names.

19.2 Directory Files

A directory file is in many respects indistinguish-
able from a non-directory file. However it contains
information which is used in locating other files and
hence its contents are carefully protected, and are
manipulated by the operating system alone.

In every file, the information is stored as one
or more 512 character blocks. Each block of a di-
rectory file is divided into 32 * 16 character struc-
tures. Each structure consists of a 16 bit “inode”
table pointer and a 14 character name. The “inode”
pointer is to the “inode” table on the same disk or
file system volume as the files which the directory
references. (More on this later.) An “inode” value
of zero defines a null entry in the directory.

The procedures which reference directories are:

namei (7518) search directory
link  (5909) create alternate name
wdir  (7477) write directory entry
unlink (3510) delete name

19.3 namei (7518)

7531: “u.u_cdir” defines the “inode” of a process’s
current directory. A process inherits its par-
ent’s current directory at birth (“newproc”,
1883). The current directory may be changed
using the “chdir” (3538) system call;

7532: Note that “func” is a parameter to “namei”
and is always either “uchar” (7689) or “schar”
(7679);

7534: “iget” (7276) is called to:

e wait until such time as the “inode” cor-
responding to “dp” is no longer locked;

e check that the associated file system is
still mounted;

e increment the reference count;

e lock the “inode”;

7535: Multiple slashes are acceptable! (i.e.

“/]/]]a///b/” is the same as “/a/b”);

7537: Any attempt to replace or delete the cur-
rent working directory or the root directory
is bounced immediately!

7542: The label “cloop” marks the beginning of a
program loop that extends to line 7667. Each
cycle analyses a component of the pathname
(i.e. astring terminated by a null character or
one or more slashes). Note that a name may
be constructed from many different characters
(7571);
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7550: The end of the pathname has been reached
(successfully). Return the current value of
“dp77 ;

7563: “search” permission for directories is coded
in the same way as “execute” permission for
other files;

7570: Copy the name into a more accessible lo-
cation before attempting to match it with a
directory entry. Note that a name of greater
than “DIRSIZ” characters is truncated;

7589: “u.u_count” is set to the number of entries
in the directory;

7592: The label “eloop” marks the beginning of
a program loop which extends to line 7647.
Each cycle of the loop handles a single direc-
tory entry;

7600: If the directory has been searched (lin-
early!) without matching the supplied path-
name component, then there must be an error
unless:

(a) this is the last component of the path-
name, i.e. “c==\0"";

(b) the file is to be created, i.e. “flag ==17;
ard

(c) the user program has ¢

for the directory;

‘write” permission

7606: Record the “inode” address for the directory
for the new file in “u.u_pdir”;

7607: If a suitable slot for a new directory en-
try has previously been encountered (7642),
store the value in “u.u_offset[1]”; else set the
“TUPD” flag for the “dp” designated “inode”
(but why?);

7622: When appropriate, read a new block from
the directory file (note the use of “bread”)
(why not “breada”?), after carefully releasing
any previously held buffer;

7636: Copy the eight words of the directory en-
try into the array “u.u_dent”. The reason
for copying before comparing is obscure! Can
this actually be more efficient? (The reason
for copying the whole directory at all is rather
perplexing to the author of these notes.);

7645: This comparison makes efficient use of a sin-
gle character pointer register variable, “cp”.
The loop would be even more efficient if word
by word comparison were used;

7647: The “eloop” cycle is terminated by one of:
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return(NULL) ;
goto out;

(7610)
(7605, 7613)

a successful match so that the branch to
“eloop” (7647) is not taken;

7657: If the name is to be deleted (“flag==2"), if

the pathname has been completed, and if the
user program has “write” access to the direc-
tory, then return a pointer to the directory
“inode”;
Save the device identity temporarily (why not
in the register “c”?) and call “iput” (7344)
to unlock “dp”, to decrement the reference
count on “dp” and to perform any consequent
processlng;

7664: Revalidate “dp” to point to the “inode” for
the next level file;

7665: “dp==NULL” shouldn’t happen, since the
directory says the file exists! However “inode”
table overflows and i/o errors can occur, and
sometimes the file system may be left in an
inconsistent state after a system crash.

19.4 Some Comments

“namei” is a key procedure which would seem to
have been written very early, to have been thor-
oughly debugged and then to have been left essen-
tially unchanged. The interface between “namei”
and the rest of the system is rather complex, and
for that reason alone, it would not win the prize for
“Procedure of the Year”.

“namei” is called thirteen times by twelve dif-
ferent procedures:

line routine parameters

3034 exec uchar 0
3543 chdir uchar 0
5770 open uchar 0
5914 link uchar 0
6033 stat uchar 0
6097 smount uchar 0
6186 getmdev uchar 0
6976 owner uchar 0
5786 creat uchar 1
5928 link uchar 1

5958 mknod uchar 1
3515 unlink uchar 2

4101 core schar 1

It will be seen that:

(a) there are two calls from “link”;



(b) the calls can be divided into four categories, of
which the first is by far the largest;

(c) the last two categories have only one represen-
tative each;

(d) in particular, there is only one call involving
the routine “schar”, which is always for a file
called “core”. (If this case were handled as
a special case e.g. where the second parame-
ter had the value “3”, then the “uchar”s and
“schar” could be eliminated.)

“namei” may terminate in a variety of ways:

(a) if there has been an error, then a “NULL” value
is returned and the variable “u.u_error” is set.

(Most errors result in a branch to the label
“out” (7669) so that reference counts for the
inodes are properly maintained (7670). This
is not necessary if the failure occurs in “iget”
(7664).);

(b) if “flag==2" (i.e. the call is from “unlink”),
the value returned (in normal circumstances)
is an “inode” pointer for the parent directory
of the named file (7660);

(c) if “flag==1" (i.e. the call is from “creat” or
“link” or “mknod”, and a file is to be created
if it does not already exist) and if the named
file does not exist, then a “NULL” wvalue is
returned (7610). In this case a pointer to the
“inode” for the directory which will point to
the new file, is left in “u.u_pdir” (7606). (Note
also that in this case, “u.u_offset” is left point-
ing either at an empty directory entry or at
the end of the directory file.);

(d) if in the remaining cases, the file exists, an “in-
ode” pointer for the file is returned (7551).
The “inode” is locked and the reference count
has been incremented. A call to “iput” is
needed subsequently to undo both these side
effects.

19.5 link (5909)

This procedure implements a system call which en-
ters a new name for an existing file into the direc-
tory structure. Arguments to the procedure are the
existing and the new names of the file;

5914: Look up the existing file name;

5917: If the file already has 127 different names,
quit in disgust;

5921: If the existing file turns out to be a directory,
then only the super-user may rename it;

5926: Unlock the existing file “inode” This is

locked when the first call on “namei” does an
“iget” (7534, 7664).
Under what conditions would the failure to
unlock the “inode” here be disastrous? The
chances that the existing file would be a di-
rectory encountered in the search for the new
name would seem slight, if not impossible.
Most probably the relevant circumstance is
where the system is attempting to recreate an
alternative file name or alias, which already
exists;

5927: Search the directory for the second name,
with the intention of creating a new entry;

5930: There is an existing file with the second
name;

5935: “u.u_pdir” is set as a side effect of the call
on “namei” (5928). Check that the directory
resides on the same device as the file;

5940: Write a new directory entry (see below);

5941: Increase the “link” count for the file.

19.6 wdir (7477)

This procedure enters a new name into a directory.
It is called by “link” (5940) and “maknode” (7467)
with a pointer to a (core) “inode” as parameter.

The sixteen characters of the directory entry are
copied into the structure “u.u_dent”, and written
from there into the directory file. (Note that the
previous content of “u.u_-dent” will have been the
name of the last entry in the directory file.)

The procedure assumes that the directory file
has already been searched, that the “inode” for the
dlrectory file has already been allocated and that
the values of “u.u offset” have been set appropri-
ately.

19.7 maknode (7455)

This procedure is called from “core” (4105), “creat”
(5790) and “mknod” (5966), after a previous call
on “namei” with a second parameter of one, has
revealed that no file of the specified name existed.

19.8 unlink (3510)

This procedure implements a system call which
deletes a file name from the directory structure.
(When all references to a file are deleted, the file
itself will be deleted.)

3515: Search for a file with the specified name, and
if it exists, return a pointer to the “inode” of
the immediate parent directory;
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3518: Unlock the parent directory;
3519: Get an “inode” pointer to the file itself;

3522: Unlinking directories is forbidden, except for
super-users;

3528: Rewrite the directory entry with the “inode”
value set to zero;

3529: Decrement the “link” count.

Note that there is no attempt to reduce the size
of a directory below its “high water” mark.

19.9 mknod (5952)

This procedure, which implements a system call of
the same name, is only executable by the super-
user. As explained in the Section “MKNOD(II)” of
the UPM, this system call is used to create “inodes”
for special files.

“mknod” also solves the problem of “where do
directories come from”? The second parameter
passed to “mknod” is used, without modification
or restriction to set “i_mode”. (Compare “creat”
(5790) and “chmod” (3569)). This is the only way
an “inode” can get flagged as a directory, for in-
stance.

In such cases, the third parameter passed to
“mknod” must be zero. This value is copied into
“i_addr[0]” (as is appropriate for special files), and,
if non-zero, will be accepted uncritically by “bmap”
(6447). It might be prudent to insert a test

if (ip->i_mode & (IFCHR & IFBLK) != 0)

before line 5969, rather than rely indefinitely on the
infallibility of the super-user.

19.10 access (6746)

This procedure is called by “exec” (3041), “chdir”
(3552), “core” (4109), “openl” (5815, 5817), “namei”
(7563, 7664, 7658) to check access permission to a
file. The second parameter, “mode”, is equal to one
of “IEXEC”, “IWRITE” and “IREAD”, with octal
values of 0100, 0200 and 0400 respectively.

6753: “write” permission is denied if the file is on
a file system volume which has been mounted
as “read only” or if the file is functioning as
the text segment for an executing program;

6763: the suer-user may not execute a file unless
it is “executable” in at least one of the three
“permission” groups. In any other situation
he is always allowed access;
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6769: If the user is not the owner of the file, shift
“m” three places to the right so that group
permissions will be operative ... If the groups
don’t match, shift “m” again;

6774: Compare “m” and the access permissions.

Note that there is an anomaly here in that if a
file has a “mode” of 0077, the owner cannot refer-
ence it at all, but everyone else can. This situation
could be changed satisfactorily by inserting a state-
ment

m=l (@] (m> 3)) > 3;

after line 6752, and replacing lines 6764, 6765 by

if (m & IEXEC && (m & ip->i_mode) == 0)



20 File Systems

In most computer systems more than one periph-
eral storage device is used for the storage of files.
It is now necessary to discuss a number of mat-
ters pertaining to the management by UNIX of the
whole set of files and file storage devices. First,
some definitions:

file system: an integrated collection of files with
a hierarchical system of directories recorded
on a single block oriented storage device;

storage device: a device which can store informa-
tion (especially disk pack or DECtape, etc.);

access device: a mechanism for transferring in-
formation to or from a storage device;

a storage device is only accessible if it is in-
serted in an access device. In this situation
reference to the storage device is made via a
reference to the access devce;

a storage device is acceptable as a file system
volume if:

(a) information is recorded as addressable
blocks of 512 characters each, which can
be independently read or written.

(Note IBM compatible magnetic tape
does not satisfy this condition.);

(b) the information recorded on the device
satisfies certain consistency criteria:

block #1 is formatted as a “super block”

(see below);

blocks #2 to #(n+1) (where n is recorded
in the “super block”) contain an “inode”

table which references all files recorded

on the storage device, and does not ref-

erence any other files;

directory files recorded on the storage
device reference all, and only, files on the
same storage device, i.e. a file system
volume constitutes a self-contained set
of files, directories and “inode” table;

a file system volume is mounted if the presence
of the storage device in an access device has
been formally recognised by the operating
system.

20.1 The ‘Super Block’ (5561)

The “super block” is always recorded as block #l1 on
the storage device. (Block #0 is always ignored and
is available for miscellaneous uses not necessarily
concerned with UNIX.)

The “super block” contains information used in
allocating resources, viz. the storage blocks and
the entries in the “inode” table recorded on the file
system. While the file system volume is mounted
a copy of the “super block” is maintained in core
and updated there. To prevent the storage device
copy becoming too far out of date, its contents are
written out at regular intervals.

20.2 The ’mount’ table (0272)

The “mount” table contained an entry for each
mounted file system volume. Each entry defines the
device on which the file system volume is mounted,
a pointer to the buffer which stores the “super
block” for the device, and an “inode” pointer. The
table is referenced as follows:

iinit (6922) which is called by “main” (1615),
makes an entry for the root device;

smount (6086) is a system call which makes en-
tries for additional devices;

iget (7276) searches the “mount” table if it en-
counters an “inode” with the ‘IMOUNT’ flag
set;

getfs (7167) searches the “mount” table to find
and return a pointer to the “super block” for
a particular device;

update (7201) is called periodically and searches
the “mount” table to locate information which
should be written from core tables into the ta-
bles maintained on the file system volumes;

sumount (6144) is a system call which deletes
entries from the table.

20.3 iinit (6922)

This routine is called by “main” (1615) to initialise
the “mount” table entry for the root device.

6926: Call the “open” routine for the root device.
Note that “rootdev” is defined in “conf.c”
(4695);

6931: Copy the contents of the root device “super
block” into a buffer area not associated with
any particular device;

6933: The zeroeth entry in the “mount” table is
assigned to the root device. Only two of the
three elements are explicitly initialised. The
third, the “inode” pointer, will never be ref-
erenced;
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6936: The “locks” stored in the “super block” are
explicitly reset. (These locks may have been
set when the “super block” was last written
onto the file system volume);

6938: The root device is mounted in a “writable”
state;

6939: The system sets its idea of the current time
and date from the time recorded in the “super
block”. (If the system has been stopped for
an appreciable period, the computer operator
will need to reset the contents of “time”.)

20.4 Mounting

From an operational view point, “mounting” a file
system volume involves placing it in a suitable ac-
cess device, readying the device, and then entering
a command such as parameters.

‘¢‘/etc/mount /dev/rk2 /rk2’’

to the “shell”, which forks a program to perform
a “mount” system call, passing pointers to the two
file names as parameters.

20.5 smount (6086)

6093: “getmdev” decodes the first argument to lo-
cate a block oriented access device;

6096: “u.u_dirp” is reset preparatory to calling
“namei” to decode the second file name.
(Note that “u.u_dirp” is set by “trap” to
“u.u_arg[0]” (2770);

6100: Check that the file named by the second pa-
rameter is in a satisfactory condition, i.e. no
one else is currently accessing the file, and
that the file is not a special file (block or char-
acter);

6103: Search the “mount” table looking for an
empty entry (“mp->m bufp==NULL”) or an
entry already made for the device. (The
“mount” data structure is defined at line
0272);

6111: “smp” should point to a suitable entry in
the “mount” table;

6113: Perform the appropriate “open” routine,
with the device name and a read/write flag
as arguments. (As was seen earlier, for the
RKO05 disk the “open” routine is a “no-op”);

6116: Read block #1 from the device. This block
is the “super block”;
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6124: Copy the “super block” into a buffer associ-
ated with “NODEV”, from the buffer associ-
ated with “d”. The second buffer will not be
released again until the device is unmounted;

6130: “ip” points to the “inode” for the second
named file. This “inode” is now flagged as
“IMOUNT”. The effect of this is to force
“iget” (7292) to ignore the normal contents
of the file, while the file system volume is
mounted. (In practice, the second file is an
empty file created especially for this purpose.)

20.6 Notes

1. The “read/write” status of a mounted device
depends only on the parameters provided to
“smount”. No attempt is made to sense the
hardware “read/write” status. Thus if a disk
is readied with “write protect” on, but is not
mounted “read only”, then the system will
complain vigorously.

2. The “mount” procedure does not carry out any
kind of label checking on the “mounted” file
system volume. This is reasonable in a sit-
uation where file system volumes are rarely
rearranged. However in situations where vol-
umes are mounted and remounted frequently,
some means of verifying that the correct vol-
ume has been mounted would seem desirable.
(Further, if a file system volume contains sen-
sitive information, it may be desirable to in-
clude some form of password protection as
well. There is room in the “super block”
(5575) for the storage of a name and an en-
crypted password.)

20.7 iget (7276)

This procedure is called by “main” (1616,1618),
“unlink” (3519), “ialloc” (7078) and “namei” (7534,
7664) with two parameters which together uniquely
identify a file: a device, and the “inode” number of
a file on the device. “iget” returns a reference to an
entry in the core “inode” table.

When “iget” is called, the core “inode” table
is searched first to see if an entry already exists for
the file in the core “inode” table. If not, then “iget”
creates one.

7285: Search the core “inode” table ...

7286: If an entry for the designated file already
exists ...

7287: Then if it is locked go to sleep;



7290: Try again. (Note the whole table needs to be
searched again from the beginning, because
the entry may have vanished!);

7292: If the IMOUNT flag is on ... this is an im-
portant possibility for which we will delay the
discussion;

7302: If the “IMOUNT” flag is not set, increase
the “inode” reference count, set the “ILOCK”
flag and return a pointer to the “inode”;

7306: Make a note of the first empty slot in the
“inode” table;

7309: If the “inode” table is full, send a message
to the operator, and take an error exit;

7314: At this point, a new entry is to be made in
the “inode” table;

7319: Read the block which contains the file sys-
tem volume “inode”. Note the use of “bread”
instead of “readi”, the assumption that “in-
ode” information begins in block #2 and the
convention that valid “inode” numbers begin
at one (not zero);

7326: A read error at this point isn’t very well re-
ported to the rest of the system;

7328: Copy the relevant “inode” information. This
code makes implicit use of the contents of the
file “ino.h” (Sheet 56), which isn’t referenced
explicitly anywhere.

Let us now return to unfinished business:

7292: The “IMOUNT” flag is found to be set. This
flag was set by “smount”, when a file system
volume was mounted;

7293: Search the “mount” table to find the en-
try which points to the curent “inode”. (Al-
though searching this table is not a horren-
dous overhead, it does seem possible that a
“back pointer” could be conveniently stored
in in the “inode” e.g. in the “ilastr” field.
This would save both time and code space.;

7396: Reset “dev” and “ino” to the mounted de-
vice number and the “inode” number of the
root directory on the mounted file system vol-
ume. Start again.

Clearly, since “iget” is called by “namei” (7534,
7664), this technique allows the whole directory
structure on the mounted file system volume to be
integrated into the pre-existing directory structure.
If we momentarily ignore the possible deviations of
directory structures away from tree structures, we
have the situation where a leaf of the existing tree
is being replaced by an entire subtree.

20.8 getfs (7167)

There is little that needs to be said about this pro-
cedure in addition to the author’s comment. This
procedure is called by

access (6754) ialloc (7072)
alloc (6961) ifree (7138)
free (7004) iupdat  (7383)

Note the cunning use of “nl”, “n2” which are
declared as character pointers i.e. as unsigned in-
tegers. This allows only one sided tests on the two
variables at line 7177.

20.9 update (7201)

The function of this procedure, in its broadest
terms, is to ensure that information on the file sys-
tem volumes is kept up to date. The comment for
this procedure (beginning on line 7190) describes
the three main sub-functions, (in the reverse or-
der!).

“update” is the whole business of the “sync”
system call (3486). This may be invoked via the
“sync” shell command. Alternatively there is a
standard system program which runs continuously
and whose only function is to call “sync” every 30
seconds. (See “UPDATE(VIII)” in the UPM.)

“update” is called by “sumount” (6150) before
a file system volume is unmounted, and by “panic”
(2420) as the last action of the system before activ-
ity ceases.

7207: If another execution of “update” is under
way, then just return;

7210: Search the “mount” table;
7211: For each mounted volume, ...

7213: Unless the file system has not been recently
modified or the “super block” is locked or the
volume has been mounted “read only” ...

7217: Update the “super block”, copy it into a
buffer and write the buffer out onto the vol-
ume;

7223: Search the “inode” table, and for each non-
null entry, lock the entry and call “iupdat”
to update the “inode” entry on the volume if
appropriate;

7229: Allow additional executions of “update” to
commence;

7230: “bflush” (5229) forces out any “delayed
write” blocks.
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20.10 sumount (6144)

This system call deletes an entry for a mounted
device from the “mount” table. The purpose of this
call is to ensure that traffic to and from the device
is terminated properly, before the storage device is
physically removed from the access device.

6154: Search the “mount” table for the appropri-
ate entry;

6161: Search the “inode” table for any outstanding
entries for files on the device. If any such
exist, take an error exit, and do not change
the “mount” table entry;

6168: Clear the “IMOUNT” flag.

20.11 Resource Allocation

Our attention now turns to the management of the
resources of an individual FSV (file system volume).

Storage blocks are allocated from the free list by
“alloc” at the request of “bmap”. Storage blocks
are returned to the free list by “free” at the behest
of “itrunc” (which is called by “core”, “openl” and
“iputn)‘

Entries in the FSV “inode” tables are made by
“ialloc”, which is called by “maknode” and “pipe”.
Entries in this table are cancelled by “ifree”, which
is called by “iput”.

The “super block” for the FSV is central to
the resource management procedures. The “super
block” (5561) contains:

e size information (total resources available);

e list of up to 100 available storage blocks;

list of up to 100 available “inode” entries;

locks to control manipulation of the above
lists;

o flags;
e current date of last update.

If the list in core of available “inode” entries
for the file system volume ever becomes exhausted,
then the entire table on the FSV is read and
searched to rebuild the list. Conversely if the avail-
able “inode” table overflows, additional entries are
simply forgotten to be rediscovered later.

A different strategy is used for the list of avail-
able storage blocks. These blocks are arranged in
groups of up to one hundred blocks. The first block
in each group (except the very first) is used to store
the addresses of the blocks belonging to the previ-
ous group. Addresses of blocks in the last incom-
plete group are stored in the “super block”.
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The first entry in the first list of block numbers
is zero, which acts as a sentinel. Since the whole
list is subject to a LIFO discipline, discovery of a
block number of zero in the list signifies that the
list is in fact empty.

20.12 alloc (6965)

This is called by “bmap” (6435, 6448, 6468, 6480,
6497) whenever a new storage block is needed to
store part of a file.

6961: Convert knowledge of the device name into
a pointer to the “super block”;

6962: If “s_flock” is set, the list of available blocks
is currently being updated by another pro-
cess;

6967: Obtain the block number of the next avail-
able storage block;

6968: If the last block number on the list is zero,
the entire list is now empty;

6970: “badblock” (7040) is used to check that the
block number obtained from the list seems
reasonable;

6971: If the list of available blocks in the “super
block” is now empty, then the block just lo-
cated will contain the addresses of the next
group of

6972: Set “s_flock” to delay any other process from
getting a “no space” indication before the list
of available blocks in the “super block” can
be replenished;

6975: Determine the number of valid entries in the
list to be copied;

6978: Reset “s_flock”, and “wakeup” anyone wait-
ing;

6982: Clear the buffer so that any information
recorded in the file by default will be all zeros;

6983: Set the “modified” flag to ensure that the
“super block” will be written out by “update”
(7213).

20.13 itrunc (7414)

This procedure is called by “core” (4112), “openl”
(5825) and “iput” (7353). In the first two cases, the
contents of the “file” are about to be replaced. In
the third case, the file is about to be abandoned.

7421: If the file is a character or block special file
then there is nothing to do;



7423: Search backwards the list of block numbers
stored in the “inode”;

7425: If the file is large, then an indirect fetch is
needed. (A double indirect fetch is needed for
blocks numbered seven and higher.);

7427: Reference all 257 elements of the buffer in
reverse order. (Note this seems to be the
only place where characters #512, #513 of
the buffer area are referenced. Since they will
presumably contain zero, they will contribute
nothing to the calculation. Hence if “510”
were substituted for “512” here, and again on
line 7432, a general improvement all round
would result (7));

7438: “free” returns an individual block to the
available list;

7439: This is the end of the “for” statement com-
mencing on line 7427. (Likewise the state-
ment which begins at 7432 ends at 7435.);

7443: Clear the entry in “i_addr[ ]”;

7445: Reset size information, and flag the “inode”
as “updated”.

20.14 free (7000)

This procedure is called by “itrunc” (7435, 7438,
7442) to reinsert a simple storage block into the
available list for a device.

7005: It is not clear why the “sfmod” flag is set
here as well as at the end of the procedure
(line 7026). Any suggestions?

7006: Observe the locking protocol;

7010: If no free blocks previously existed for the
device, restore the situation by setting up a
one element list containing an entry for block
#0. This value will subsequently be inter-
preted as an “end of list” sentinel;

7014: If the available list in the “super block” is
already full, it is time to write it out onto the
FSV. Set “s_flock”;

7016: Get a buffer, associated with the block now
being entered in the free list;

7019: Copy the contents of the super block list,
preceded by a count of the number of valid
blocks, into the buffer; write the buffer; unset
the lock and “wakeup” anybody waiting,

7025: Add the returned block to the available list.

20.15 iput (7344)

This procedure is one of the most popular in UNIX
(called from nearly thirty different places) and its
use will have already been frequently observed.

In essence it simply decrements the reference
count for the “inode” passed as a parameter, and
then calls “prele” (7882) to reset the “inode” lock
and to perform any necessary “wakeup”s.

“iput” has an important side effect. If the ref-
erence count is going to be reduced to zero, then a
release of resources is indicated. This may be sim-
ply the core “inode”, or both that and the file itself,
if the number of links is also zero.

20.16 ifree (7134)

This procedure is called by “iput” (7355) to return a
FSV “inode” to the available list maintained in the
“super block”. If this list is already full (as noted
above) or if the list is locked (using “s_ilock”) the
information is simply discarded.

20.17 iupdat (7374)

This procedure is called by “statl” (6050), “update”
(7226) and “iput” (7357) to revise a particular “in-
ode” entry on a FSV. It does nothing if the cor-
responding core “inode” is not flagged (“IUPD” or
((IACC” );

The “IUPD” flag may be set by one of

unlink (3530)
chmod (3570)
chown (3583)
link (5942) namei
writei (6285,6318) pipe

bmap (6452,6467)
itrunc (7448)
maknode (7462)
(7609)
(7751)

The “TACC” flag may be set by one of

readi (6232)
writei (6285) pipe

maknode (7462)
(7751)

The flags are reset by “iput” (7359).

7383: Forget it, if the FSV has been mounted as
“read only”;

7386: Read the appropriate block containing the
FSV “inode” entry. As observed earlier with
respect to “iget”, note the the use of “bread”
instead of “readi”, the assumption that the
“inode” table begins at block #2 and the con-
vention that valid “inode” numbers begin at
one;

7389: Copy the relevant information from the core
“inode”;
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7391: If appropriate, update the time of last ac-
cess;

7396: If appropriate, update the time of last mod-
ification;

7400: Write the updated block back to the FSV.
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21 Pipes

A “pipe” is a FIFO character list, which is managed
by UNIX as yet another variety of file.

One group of processes may “write” into a
“pipe” and another group may “read” from the
same “pipe”. Hence “pipe”s may be, and are used,
primarily for interprocess communication.

By exploiting the concept of a “filter”, which
is a program which reads an input file and trans-
forms it into an output file, and by using “pipes”
to link two or more programs of this type together,
UNIX offers its users a surprisingly comprehensive
and sophisticated set of facilities.

21.1 pipe (7723)

A “pipe” is created as a result of a system call on
the “pipe” procedure.

7728: Allocate an “inode” for the root device;
7731: Allocate a “file” table entry;

7736: Remember the “file” table entry as “r” and
allocate a second “file” table entry;

7744: Return user file identifications in RO and R1;

7746: Complete the entries in the “file” array and
the “inode” entry.

21.2 readp (7758)

“pipes” are different from other files in that two sep-
arate offsets into the file are kept — one for “read”
operations and one for “write” operations. The
“write” offset is actually the same as the file size.

7763: the parameter passed to “readp” is a pointer
to a “file” array entry, from which an “inode”
pointer can be extracted;

7768: “plock” (7862) ensures that only one oper-
ation takes place at a time: either “read” or
“write”;

7776: If a process wishing to write to a “pipe” has
been blocked because the pipe was “full” (or
rather because the valid part of the file had
reached the file limit), it will have signified its
predicament by setting the “IWRITE” flag in
“ip->i_mode”;

7786: Release the lock before going to sleep;

7787: “i_count” is the number of file table entries
pointing at the “inode”. If this is less than

two, then the group of “writers” must be ex-
tinct;

7789: A process waiting for input will raise the
“IREAD” flag. Since a pipe cannot be full
and empty simultaneously, no more than one
of the flags “IWRITE” or “IREAD” should
be set at any one time;

7799: “prele” unlocks the file and “wakes up” any
process waiting for the pipe.

21.3 writep (7805)

The structure of this procedure echoes that of
“readp” in many respects.

7828: Note that a “writer”, which finds that there
are no more “readers” left, receives a “signal”
just in case he is not monitoring the result of
his “write” operation.

(A “reader” in the analogous situation re-
ceives a zero character count as the result of
the read, and this is the standard end-of-file
indication.)

7835: The “pipe” size is not allowed to grow be-
yond “PIPSIZ” characters. As long as “PIP-
S1Z” (7715) is no greater than 4096, the file
will not be converted to a “large” file. This is
highly desirable from the viewpoint of access
efficiency.

(Note that “PIPSIZ” limits the “write” offset
pointer value. If the “read” offset pointer is
not far behind, the true content of the “pipe”
may be quite small).

21.4 plock (7862)

Lock the “inode” after waiting if necessary. This
procedure is called by “readp” (7768) and “writep”
(7815).

21.5 prele (7882)

Unlock the “inode” and “wake” any waiting pro-
cesses. This procedure is called by several oth-
ers (especially “iput”), in addition to “readp” and
“writep”.
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Section Five is the final section: last but not least.
It is concerned with input/output for the slower, char-
acter oriented peripheral deviees.

Such devices share a common buffer pool, which
is manipulated by a set of standard procedures.

The set of character oriented peripheral devices
are exemplified by the following:

e KL/DL11 interactive terminal
e PC11 paper tape reader/punch
e LP11 line printer.

22 Character Oriented Special
Files

Character oriented peripheral devices are relatively
slow (< 1000 charaeters per second) and involve
character by character transmission of variable
length, usually short, records.

A device handler (as its name suggests) is the
software part of the interface between a device and
the general system. In general, the device handler
is the only part of the software which recognises the
idiosyncrasies of a particular device.

As far as possible or reasonable, a single device
driver is written to serve many separate devices of
similar types, and, where appropriate, several such
devices simultaneously. The group of “interactive
terminals” (with keyboard input and a serial printer
or visual display output) can just be coerced with
difficulty into a single device driver, as the reader
may judge during his perusal of the file “tty.c”.

The standard UNIX device handlers for charac-
ter devices make use of the procedures “putc” and
“getc” which store and retrieve characters into and
from a standard buffer pool. This will be described
in more detail in Chapter Twenty-Three.

The “PDP11 Peripherals Handbook” should be
consulted for more complete information on the
device controller hardware and the devices them-
selves.

22.1 LP11 Line Printer Driver

This driver is to be found in the file “Ip.c” (Sheets
88, 89). Much of the complexity of this driver is
contained in the proeedure “Ipcanon” (8879). This
procedure is involved in the proper handling of spe-
cial characters and this is a separate issue from the
one we wish to study first.

Initially one may ignore “Ipcanon” by assum-
ing that all calls upon it (lines 8859, 8865, 8875)
are simply replaced by similar calls upon “lpout-
put” (8986). “Ipcanon” acts as a “final filter” for
characters going to the line printer: handling code
conversions, special format characters, etc.
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22.2 lpopen (8850)

When a line printer file is opened, the normal call-
ing sequence is followed:

“open” (5774) calls “openl”, which (5832) calls
“openi”, which (6716) calls, in the case of a char-
acter special file, “cdevsw|..].d_open”. In the case
of the line printer, this latter translates (4675) to
“lpopen”.

8853: Take the error exit if either another line
printer file is already open, or if the line
printer is not ready (e.g the power is off, or
there is no paper, or the printer drum gate is
open, or the temperature is too high, or the
operator has switched the printer off-line.)

8857: Set the “Ipll.flag” to indicate that the file
is open, the printer has a “form feed” capa-
bility and lines are to be indented by eight
characters.

22.3 Notes

(a) “Ip11” is a seven word structure defined be-
ginning at line 8829. The first three words
of the structure in fact constitute a structure
of type “clist” (7908). Only the first element
is explicitly manipulated in “Ip.c”. The next
two are used implicitly by “putc” and “getc”.

(b) “flag” is the fourth element of the structure.
The remaining three elements are

“mcc” maximum character count
“cec” current character count
“mlc¢” maximum line count

(c) The line printer controller has two registers on
the UNIBUS.

Line Printer Status Register (“lpsr”)

bit 15 Set when an error condition exists (see
above);

bit 7 “DONE” Set when the printer controller is
ready to receive the next character;

bit 6 “TIENABLE” Set to allow “DONE” or “Er-
ror” to cause an interrupt;

Line Printer Data Buffer Register (“lp-
buf”)

Bits 6 through 0 hold the seven bit ASCII code
for the character to be printed. This register is
“write only”.

8858: Set the “enable interrupts” bit in the line
printer status register;



8859: Send a “form feed” (or “new page”) charac-
ter to the printer, to ensure that characters
which follow will start on a new page. (As al-
ready noted above, at this stage we are ignor-
ing “Ipcanon” and assuming line 8859 to be
simply “lpoutput (FORM)”. “lpcanon” does
things like suppressing all but the first “form
feed” in a string of “form feed”s and “new
line”s, to avoid wasting paper.);

22.4 lpoutput (8986)

This procedure is called with a character to be
printed, as a parameter.

8988: “Ipll.cc” is a count of the number of char-
acters waiting to be sent to the line printer.
If this is already large enough (“LPHWAT”,
8819), “sleep” for a while (so as not to flood
the character buffer pool);

8990: Call “putc” (0967) to store the character
in a safe place. (The function of “putc”
and its companion “getc” is a major topic to
be discussed in Chapter Twenty Three.) It
should be noted that no check is made that
“putc” was successful in storing the charac-
ter. (There may have been no space in the
character buffers.) In practice there seems to
be no real problem here, but one can wonder.

8991: Raise the processor priority sufficiently to
inhibit the interrupts from the line printer,
call “lpstart” and then drop the priority
again.

22.5 Ipstart (8967)

While the line printer is ready, and while there are
still characters stored away in the “safe place”, keep
sending characters to the printer controller.

The presumption is that while the controller is
building up a set of characters for a complete line,
the “DONE” bit will reset faster than the CP can
feed characters to the controller.

However once a print cycle has been initiated,
the “DONE” bit will not be reset again for a period
of the order of 100 milliseconds (depending on the
speed of the printer).

Note that during this series of data transfers,
interrupts will be inhiblted and so “lpint” will not
be getting into the act whenever the “DONE” bit
is set, except possibly once at the very end when
the processor priority is reduced again.

22.6 lpinit(8976)

This procedure is called to handle interrupts from
the line printer. As mentioned above, most poten-

tial interrupts are ignored by the processor. Those
interrupts which are accepted by the CP will be
associated with either

(a) completion of a print cycle; or

(b) the printer going ready after a period during
which the “Error” bit was set; or

(c) the last transfer in a series of character trans-
fers;

8980: Start transferring characters into the printer
buffer again;

8981: Wakeup the process waiting to feed charac-
ters to the printer if the number of characters
waiting to be sent is either zero or exactly
“LPLWAT” (8818).

This latter condition is somewhat puzzling in
that it will only occasionally be satisfied. The in-
tention surely is “if the number of characters in the
list is getting low, start refilling”. However if “lp-
start” carries out a series of transfers without inter-
ruption (at least by “lpint”) the number of charac-
ters could go from a value greater than “LPLWAT”
to one less than this without this test ever being
made. Accordingly the waiting process will not be
awakened until the list is completely empty. The
result could be frequently to delay the initiation of
the next print cycle, and hence to allow the printer
to run below its rated capacity.

One solution to this problem is to change en-
tirely the buffering strategy for line printers. A
less drastic change would involve inventing a new
flag, “Ip11.wflag” say, replacing lines 8981, 8982 by
something like

if (1lpill.cc <= LPLWAT && 1lpill.wflag)
{ wakeup (&lpil1);

lpll.wflag = 0
}

and replacing line 8989 by

{ lpll.wflag++;
sleep(&lpll, LPRI);
}

22.7 Ilpwrite (8870)

This is the procedure which is invoked as a result
of the write system call:

“write” (5722) calls “rdwr”, which (5755) calls
“writei”, which (6287) calls “cdevsw|..].d write”,
which translates (4675) to “lpwrite”.

“lpwrite” takes the non-null characters of a null
terminated string recorded in the user area, and
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passes them to “lpoutput” (via “Ipcanon”) one at
a time.

The list of procedure calls which leads to the
invocation of this procedure is similar to that for
“Ipopen”. A “form feed” character is output to
clear the current page, and the “open” flag is reset.

22.8 Discussion

“Ipwrite” is called one or more times to send a string
of characters to the printer. In turn it calls “lp-
canon” which calls “Ipoutput”. If at any point too
many characters are stored away, the procss will
“sleep” in “Ipoutput”. Sooner or later “lpoutput”
will continue, will store the character in a buffer
area, and will then call “Ipstart” to send, if possi-
ble, a string of characters to the printer controller.

“Ipstart” is called both when more characters
are available to be sent, and when an interrupt from
the printer is taken.

The majority of calls on “lpstart” will in fact
achieve nothing. Occasionally (usually when the
printer has just completed a print cycle) “Ipstart”
will be able to send a whole string of characters to
the printer controller.

22.9 lpcanon (8879)

This procedure interprets characters being sent to
the line printer and make various modifications, in-
sertions and deletions. It thus functions as a filter.

8884: The section of code from here to line 8913
is concerned with character translation when
the full 96 character set is not available, and
a 64 character set is in use.

Since the capabilities of a printer do not usu-
ally change with time, the defined variable
“CAP” (8840) must be set once and for all
(at a particular installation).

The run-time test on (Ip11.flag & CAP) could
be replaced by a compile-time test on (CAP)
and if the compiler has its “druthers”, if CAP
turns out to be zero, the whole section of code
to line 8913 could be compiled down to noth-
ing.

The present code could be said to plan ahead
for a situation where an installation may have
two or more printers of different types. Even
so there is a basic inconsistency here in the
use of “CAP”, “IND” and “EJECT” on the
one hand, and “EJLINE” and “MAXCOL”
on the other. In fact since forms of different
sizes are not uncommonly used on a single
printer, the last two should not be constants
at all, but should be dynamically settable.
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8885: Lower case alphabetics are translated by the
addition of a constant, which is conveniently
defined as “’A’ —’a”’;

8887: Certain of the remaining characters are spe-
cial characters which are printed as a similar
character with an overprinted minus sign, e.g.
“{” (8889) is printed as “{-”;

8909: The “similiar” character is output via a re-
cursive call on “lpcanon”, which will incre-
ment “Ipll.ccc” by one as a side effect;

8910: Decrement the current character count (for
the same effect as a “back space” character)
and ...

8911: Prepare to output a minus sign;

8915: The “switch” statement beginning here ex-
tends to line 8963. Certain characters in-
volved in vertical and horizontal spacing are
given special interpretations with delayed ac-
tions;

8917: For a horizontal tab character, round the
current character count up to the next multi-
ple of eight. Do not output any blank char-
acters immediately;

8921: For a “form feed” or “new line” character,
if:
(a) the printer does not have a “page restore”
capability; or

(b) the current line is not empty; or

(c) some lines have been completed since the
last “form feed” character, then ...

8925: reset “lpll.mcc” to zero;
8926: Increment the completed line count;

8927: Convert a “new line” character to a “form
feed” if sufficient lines have been completed
on the current page, and the printer has a
“form feed” capability;

8929: Output the character, and if was a “form
feed”, reset number of completed lines zero;

Examination of this code will show that:

(a) Any string of “form feed”s or “new line”s which
begins with a “form feed”, will, if sent to
a printer with “form feed” capability, be re-
duced to a single “form feed”;

(b) A “form feed” character sent to a printer with-
out the “form feed” capability, will cause a
new line to be started but will be passed on
otherwise without comment.



8934: For “carriage return”s, and, note, “form
feed”s and “new line”s, reset the current char-
acter count to zero or eight, depending on
“IND”, and return;

8949: For all other characters ...

8950: If a string of “backspace”s (real or con-
trived) and /or “carriage returns” has been re-
ceived, output a single “carriage return” and
reset the maximum character count to zero;

8954: Provided the count does not exceed the
maximum line length, output blank charac-
ters to bring the maximum character count to
the current character count. (Perhaps these
two variables would be more accurately called
the “actual character count” and the “logical
character count”.);

8959: Output the actual character.

22.10 For idle readers: A suggestion

It will be observed that backspaces for overprint-
ing or underscoring characters introduce separate
print cycles, and where these features are in heavy
use, the effective output rate of the printer may be
drastically reduced. If this is considered a serious
problem, “Ipcanon” could be rewritten to ensure
that no more than two print cycles are used per
line in such cases.

22.11 PC-11 Paper Tape Reader /Punch

Driver

This driver is to be found in the file “pc.c” on Sheets
86, 87. It is simpler than the line printer driver
in that there is ro routine analogous to “lpcanon”.
However it is more complicated in that there is both
an input and an output device which can be simul-
taneously and independently active.

A description of the operation of this device is
inciuded in the document “The UNIX I/O System”
by D. Ritchie. Certain special features may be
noted:

(1) Only one process may open the file for reading
at a time, but there is no limit on the nmber
of writers;

(2) This routine pays a little more attention to er-
ror conditions than the line printer driver, but
the treatment is still not exhaustive;

(3) “passc” (8695) knows how many characters are
required and returns a negative valie when
“enough” is reached;

(4) “pcclose” is careful to flush out any remaining
characters in the input queue if and only if it
believes the device was opened for input.
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23 Character Handling

Buffering for character special devices is provided
via a set of four word blocks, each of which provides
storage for six characters. The prototype storage
block is “cblock” (8140) which incorporates a word
pointer (to a similar structure) along with the six
characters.

Structures of type “clist” (7908) which contain
a character counter plus a head and tail pointer
are used as “headers” for lists of blocks of type
“cblock”.

“cblock”s which are not in current use are linked
via their head pointers into a list whose head is the
pointer “cfreelist” (3149). The head pointer for the
last element of the list has the value “NULL”.

A list of “cblock”s provides storage for a list of
characters. The procedure “putc” may be used to
add a character to the tail of such a list, and “getc”,
to remove a character from the head of such a list.

Figures 23.1 through 23.4 illustrate the develop-
ment of a list as characters are deleted and added.

g m

h n

1 0
14 J p
head > e k q
tail f 1 r 4—‘

Figure 23.1

g m

h n

i 0
13 J p
he.ad ~— k a
tail f 1 r

=

Figure 23.2

Initially the list is assumed to contain the four-
teen characters “efghijklmnopqr”. Note that the
head and tail pointers point to characters. If the

first character, “e”, is removed by “getc”, the sit-
uation portrayed in Figure 23.1 changes to that of
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Figure 23.2. The character count has been decre-
mented and the head pointer has been advanced by
one character position.

If a further character, “f”, is removed from the
head of the list, the situation becomes as in Figure
23.3. The character count has been decremented;
the first “cblock” no longer contains any useful in-
formation and has been returned to “cfreelist”; and
the head pointer now points to the first character
in the second “cblock”.

> g m

h n

i o}

12 ] p
head k q
tail | r

=

Figure 23.3

The question now poses itself: “how is the dif-
ference between the first and second situations de-
tected so that the action taken is always appropri-
ate?”:

The answer (if you have not already guessed)
involves looklng at the value of the pointer address
modulo 8. Since division by eight is easily per-
formed on a binary computer, the reason for the
choice of six characters per “cblock” should now
also be apparent.

The addition of a character to the list is illus-
trated in the change between Figure 23.3 and Fig-
ure 23.4.

> g m S |
h n
i o
13 ] p
head k a
tail | r

Figure 23.4

Since the last “cblock” In Figure 23.3 was full,
a new one has been obtained from “cfreelist” and



linked into the list of “cblock”s. The character
count and tail pointer have been adjusted appro-
priately.

23.1 cinit (8234)

This procedure, which is called once by “main”
(1613), links the set of character buffers into the
free list, “cfreelist”, and counts the number of char-
acter device types.

8239: “ccp” is the address of the first word in the
array “cfree” (8146);

8240: Round “ccp” up to the next highest mul-
tiple of eight, and mark out “cblock” sized
pieces, taking care not to exceed the bound-
ary of “cfree”.

Note. In general there will be “NCLIST — 1”
(rather than “NCLIST”) blocks so defined;

8241: Set the first word of the “cblock” to point
to the current head of the free list.

Note that “c_next” is defined on line 8141,
and that the initial value of “cfreelist” is
“NULL”.

8242: Update “cfreelist” to point to the new head
of the list;

8244: Count the number of character device types.
Upon reference to “cdevsw” on Sheet 46, it
will be seen that “nchrdev” will be set to 16,
whereas a more appropriate value would be
10.

23.2 getc (0930)
This procedure is called by

flushtty (8258, 8259, 8264)
canon (8292) pcread (8688)
ttstart (8520) pcstart (8714)
ttread  (8544) lpstart (8971)
pcclose (8673)

with a single argument which is the address of a
“clist” structure.

0931: Copy the parameter to rl and save the initial
processor status word and value of r2 on the
stack;

0934: Set the processor priority to five (higher
than the interrupt priority of a character de-
vice);

0936: rl points to the first word of a “clist” struc-
ture (i.e. a character count). Move the sec-
ond word of this structure (i.e. a pointer to
the head character) to r2;

0937: If the list is empty (head pointer is “NULL”)
go to line 0961;

0938: Move the head character to r0 and increment
r2 as a side effect;

0939: Mask r0 to get rid of any extended negative
sign;

0940: Store the updated head pointer back in the
“clist” structure. (This may have to be al-
tered later.);

0941: Decrement the character count and if this is
still positive, go to line 0947;

0942: The list is now empty, so reset the head and
tail character pointers to “NULL”. Go to line
0952;

0947: Look at the three least significant bits of r2.
If these are non-zero, branch to line 0957 (and
return to the calling routine forthwith);

0949: At this point, r2 is pointing at the next char-
acter position beyond the “cblock”. Move the
value stored in the first word of the “cblock”
(i.e. at r2 — 8), which is the address of the
next “cblock” in the list to the head pointer
in the “clist”. (Note that r1 was incremented
as a side effect at line 0941):

0950: The last value stored needs to incremented
by two (Consult Figures 23.2 and 23.3);

0952: At this point, a “cblock” determined by r2 is
to be returned to “cfreelist”. Either r2 points
into the “cblock” or just beyond it. Decre-
ment r2 so that r2 will point into the “cblock”;

0953: Reset the three least significant bits of r2,
leaving a pointer to the “cblock”;

0954: Link the “cblock” into “cfreelist”;

0957: Restore the values of r2 and PS from the
stack and return;

0961: At this point the list is known to be empty
because a “NULL” head pointer was encoun-
tered. Make sure that the tail pointer is
“NULL” also;

0962: Move —1 to r0 as the result to be returned
when the list is empty.

23.3 putc (0967)

This procedure is called by
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canon (8323)
ttyinput (8355, 8358)
ttyoutput (8414, 8478)
pcrint (8730)
pcoutput (8756)
lpoutput (8990)

with two arguments: a character and the address
of a “clist” structure.

“getc” and “putc” have related functions and
the codes for the two procedures are similar in many
respects. For this reason the code for “putc” will
not be examined in detail, but is left for the reader.

It should be noted that “putc” can fail if a new
“cblock” is needed and “cfreelist” is empty. In this
case a non-zero value (line 1002) is returned rather
than a zero value (line 0996).

Note. The procedures “getc” and “putc” dis-
cussed here are NOT directly related to the proce-
dures dlscussed in the Sections “GETC(III)” and
“PUTC(III)” of the UPM.

23.4 Character Sets

UNIX makes use of the full ASCII character set,
which is displayed in Section “ASCII(V)” of the
UPM. Since knowledge of this character set is often
assumed without comment, not always justifiably,
some comment here would seem to be in order.

“ASCII” is an acronym for “American Standard
Code for Information Interchange”.

23.5 Control Characters

The first 32 of the 128 ASCII characters are non-
graphic and are intended for the control of some
aspect of transmission or display. The control char-
acters explicitly used or recognised by UNIX are

Numeric Description UNIX
Value Name
004 eot end of transmission 004
or (control-D)

010 bs  back space 010

011 ht  (horizontal) tab A\t
012 nl  new line or line feed FORM
014 np new page or form feed ’\r’

015 cr  carriage return \n’
034 fs file separator or quit CQUIT
040 sp forward space or blank ’’

0177 del delete CINTR

It will be noted that the last two of these belong
to the last 96 characters or the graphic portion, of
the code.
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23.6 Graphic Characters

There are 96 graphic characters. Two of these, the
space and the delete, are not “visible”, and may be
ciassified with the control characters.

The graphic characters may be divided into
three groups of 32 characters, which may be roughly
characterised as

e numeric and special characters
e upper case alphabetic characters

e lower case alphabetic characters.

Of course, since there are only 26 alphabetic
characters, the latter two groups include some spe-
cial characters as well. In particular, the last group
includes the following six nonalphabetic characters:

140 ¢ reverse apostrophe
173 { left brace

174 | vertical bar

175 } right brace

176 ~ tilde

177 delete

23.7 Graphic Character Sets

Devices such as line printers or terminals which sup-
port all the ASCII graphic symbols are often said to
support the 96 ASCII character set (though there
are only 94 graphics actually involved).

Devices which support all the ASCII graphic
symbols except those in the last group of 32, are
said to support the 64 ASCII character set. Such
devices lack the lower case alphabetics and the sym-
bols listed above, namely “~”, “{”, “|” and “\}”.
Note that “delete”, since it is not a visible charac-
ter, can still be supported.

Devices in this latter group may be referred to
as “upper case only”.

Sometimes some of the graphic symbols may be
non-standard, e.g. < instead of _ and this can be
inconvenient, though not usually fatal.

UNIX prefers, as the reader is no doubt well
aware, to view the world through “lower case” spec-
tacles. Alphabetic characters received from an “up-
per case only” terminal are translated immediately
upon receipt from upper case to lower case. A
lower case alphabetic may subsequently be trans-
lated back to upper case if it is preceded by a
single backslash. For output to such a terminal,
both upper and lower case alphabetic characters are
mapped to uppercase.

The conventions for line printers and terminals
are different because:



(a) for line printers, horizontal alignment is usu-
ally important, and it is possible (without
too much difficulty) to print composite, over-
struck characters (using the minus sign in this
case); and

(b) for terminals, horizontal alignment is not con-
sidered to be so important; backspacing to
provide overstruck characters does not work
on most VDUs; and, since the same graphic
conventions are used for both input and out-
put, the symbols should be as convenient to
type as possible.

23.8 maptab (8117)

This array is used in the translation of character in-
put from a terminal preceded by a single backslash,
44\77 .

There are three characters, 004 (eot), ‘#’ and
‘@’, which always have special meanings and need
to be asserted by a backslash whenever they are to
be interpreted literally. These three characters oc-
cur in “maptab” in their “natural” locations (i.e.
their locations in the ASCII table). Thus for exam-
ple ‘4’ has code 043 and

maptab[043] == 043.

The other non-null characters in “maptab” are
involved in the translation of input characters from
“upper case only” devices and do not occur in
their “natural” locations but in the location of their
equivalent character, e.g. “\{” occurs in the natu-
ral location for “{”, since “\{” will be interpreted
as “{”, etc.

Note the situation regarding alphabetic charac-
ters. This is only explicable when it is remembered
that the alphabetic characters are all translated to
lower case before any backslash is recognised.

23.9 partab (7947)

This array consists of 256 characters, like “maptab”.

Unfortunately the initialisation of “partab” was
omitted from the UNIX Operating System Source
Code booklet. It is certainly needed, and so is given
now:

char partab [] {

0001,0201,0201,0001,0201,0001,0001,0201,
0202,0004,0003,0205,0005,0206,0201,0001,
0201,0001,0001,0201,0001,0201,0201,0001,
0001,0201,0201,0001,0201,0001,0001,0201,
0200 0000,0000,0200,0000,0200,0200,0000,
0000 0200,0200 0000,0200,0000,0000,0200,
0000,0200,0200 0000,0200,0000,0000,0200,

0200,0000,0000,0200,0000,0200,0200,0000,
0200,0000,0000,0200,0000,0200,0200,0000,
0000, 0200,0200,0000,0200,0000,0000,0200,
0000, 0200,0200,0000,0200,0000,0000,0200,
0200 0000,0000 0200,0000,0200,0200,0000,
0000 0200,0200 0000,0200,0000,0000,0200,
0200,0000,0000,0200,0000,0200,0200,0000,
0200,0000,0000,0200,0000,0200,0200,0000,
0000, 0200,0200,0000,0200,0000,0000,0201
};

Each element of “partab” is an eight bit char-
acter, which, with the use of appropriate bitmasks
(0200 and 0177), can be interpreted as a two part
structure:

bit 7 parity bit;
bits 3-5 not used. Always zero;
bits 0-2 code number.

The parity bit is appended to the seven bit
ASCII code when a character is transmitted by the
computer, to form an eight bit code with even par-
ity.

The code number is used by “ttyoutput” (8426)
to classify the character into one of seven categories
for determining the delay which should ensue before
the transmission of the next character. (This is par-
ticularly important for mechanical printers which
require time for the carriage to return from the end
of a line, etc.)
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24 Interactive Terminals

Our remaining task, to be completed in this and
the following chapter, is to consider the code which
controls interactive terminals (or “terminals”, for
short).

A wide variety of terminals is available and sev-
eral different types may be simultaneously attached
to a single computer. Distinguishing characteris-
tics for different classes of terminal include (be-
sides such non-essential features as shape, size and
colour):

(a) transmission speed, e.g. 110 baud for an
ASR33 teletype, 300 baud for a DECwriter,
2400 baud or 9600 baud for a Visual Display
unit (“VD”);

(b) graphic character set, notably the full ASCII
graphic set and the 64 graphic subset;

(c) transmission parity: odd, even, none or inop-
eratlve;

(d) output technique: serial printer or visual dis-
play;

(e) miscellaneous: combined carriage return/line
feed character, half duplex terminal (input
characters do not need echoing); recognition
of tab characters;

(f) characteristic delays for certain control func-
tions, e.g. carriage returns may not be com-
pleted within a single character transmission
time, etc.

As well as the wide variety of terminals which
are available and in use, there is also a variety of
hardware devices which may be used to interface a
terminal to a PDP 11 computer. For example:

DL11/KL11 single line, asynchronous
interface; 13 standard
transmission rates between
40 and 9600 baud;

DJ11 16 line, asynchronous, buffered
serial line multiplexer; 11
speeds between 75 and 9600 baud,
selectable in four line groups;

DH11 16 line, asynchronous, buffered,
serial line multiplexer; 14 speeds,
individually selectable; DMA
transmission

Each of the above interfaces will work in full or
half duplex mode; handle 5, 6, 7 or 8 level codes;
generate odd, even or no parity; and generate a stop
code of 1, 1.5 or 2 bits.
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In addition to the above asynchronous inter-
faces, there are a number of synchronous interfaces,
e.g. DQ11.

Each interface has its own control characteris-
tics and it requires a separate operating system de-
vice driver. The common code which can be shared
between these is gathered into a single file “tty.c”,
to be found on Sheets 81 to 85. A set of common
definitions is gathered in the file “tty.h” on Sheet
79.

By way of example, Sheet 80 contains the file
“kl.c”, which constitutes the device driver for a set
of DL11/KL11 interfaces. This device driver always
needs to be present, since one KL11 interface is in-
variably included in a system for the the operator’s
console terminal.

24.1 The ’tty’ Structure (7926)

An instance of “tty” is associated with every ter-
minal port to the system (no matter what type of
hardware interface is used). A “port” in this con-
text is a place to attach a terminal line. Hence a
DL11 supplies only one port, whereas a DJ11 sup-
plies up to sixteen ports.

The “tty” structure consists of sixteen words
and includes:

A, t.dev fixed for a particular
t_addr terminal port;

B. t_speeds fixed for a particular
t_erase terminal. These values may
tkill be set by “stty” and
t_flags interrogated by “gtty”;

C. t_rawq list heads for three
t_canq character queues: the
t_outq so-called “raw” input,

“cooked” input and the
output queues;

D. t_state status information which
t_delct changes frequently during
t_col normal processing;
t_char

Table 24.1

24.2 Interactive Terminals

The reader should study the information on Sheet
79 carefully. Certain items listed below are not ref-
erenced in any essential way in the selection of code
examined here.

NLDELAY
TBDELAY

t_char (7940)
t_speeds (7941)

(7974)
(7975)



HUPCL (7966) CRDELAY  (7976)
0DDP (7972) WOPEN (7985)
EVENP (7973) ASLEEP (7993)

24.3 Initialisation

Initialisation of the “tty” structures is the respon-
sibility of the various “open” routines in the device
drivers, for example, “klopen” (8023).

The items in Group B of Table 24.1 may be
changed by a “stty” system call. The current values
may be interrogated by a “gtty” system call.

A description of these is contained in the sec-
tions, “STTY(II)” and “GTTY(II)” of the UPM.
These calls are invoked by the “stty” shell com-
mand which is described in the section “STTY(I)”.

Since the “stty” and “gtty” system calls require
a file descriptor as a parameter, they can only be
applied to an “open” character special file.

The two system calls share a good deal of com-
mon code. We will trace the progress of an exe-
cution of “stty” below and leave the tracing of a
similar execution of “gtty” to the reader.

24.4 stty (8183)

This procedure implements the “stty” system call.
It copies three words of user parameter information
into “u.u_arg|..]” using the parameter supplied as
a pointer, and then calls “sgtty”.

24.5 sgtty (8201)

8206: Get a validated pointer to a “file” array en-
try;

8209: Check that the file is a “character special”;

8213: Call the appropriate “d_sgtty” routine for
the device type. (See Sheet 46.)

Note that the “d_sgtty” routine is “nodev” for
the line printer and paper tape reader/punch.

24.6 klsgtty (8090)

This is an example of a “d_sgtty” routine. It calls
“ttystty” passing a pointer to the appropriate “tty”
structure as a parameter.

24.7 tysty (8577)

A call originating from “stty” will have a second
parameter of zero.

8589: Empty all the queues associated with the
terminal forthwith. They quite likely contain
nonsense;

8591: Reset the speed information (useful in the
case of a DH11 interface, but of little interest
for the present selection of code);

Reset the “erase” character and the “kill”
character. (“kill” here denotes “throw away
the current input line”.) Note that if these
characters are changed away from their nor-
mal values of “#” and “@” respectively, no
corresponding changes are made to “maptab”.
Nor should they!),

8593: Reset the “flags” defining some relevant ter-
minal characteristics (see Sheet 79):

flag bit if set ...

XTABS 1
horizontal tab characters
correctly;

LCASE 2
64 character ASCII subset;
ECHO 3 the terminal is operating in
full duplex mode, and input
characters must be echoed
back;
CRMOD 4 upon input, a “carriage
return” is replaced by a
“line feed”; upon output, a
“line feed” is replaced by a
“carriage return” and a “line
feed”;
RAW 5 input characters are to be
sent to the program exactly
as received, without “erase”
or “kill” processing, or
adjustment for backslash
characters.
In addition, the following bits are interro-
gated by “ttyoutput” (8373) in choosing the
delay which should ensue after the charac-
ter indicated is sent, before sending the next
character:

8,9 line feed;

10,11  horizontal tab;

12,13 carriage return;

14 vertical tab or form feed.

24.8 The DL11/KL11 Terminal De-
vice Handler

The file “kl.c” constitutes the device handler for
terminals connected to the system via DL11/KL11
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the terminal will not interpret

the terminal supports only the



interfaces. This group always has at least one mem-
ber — the operator’s console terminal. Hence this
device handler will always be present.

Each DL11/KL11 hardware controller provldes
an asynchronous, serial interface to connect a single
terminal to a PDP 11 system. For more complete
details regarding this interface the reader should
consult the “PDP11 Peripherals Handbook”.

24.9 Device Registers

Each DL11/RL11 unit has a group of four registers
occupying four consecutive words on the UNIBS.
UNIX maps a structure of type “klregs” (8016) onto
each register group.

Receiver Status Register (klresr)

bit 7 Receiver Done. (A character has
been transferred into the
Receiver Data Buffer Register.);

bit 6 Receiver Interrupt Enable.
(When set, an interrupt is
caused every time bit 7 is set.);

bit 1 Data terminal ready;

bit 0 Reader Enable. Write only.
(When set, bit 7 is cleared.).

Receiver Data Buffer Register (klrbuf)
bit 15 Error indication, when set.

bits 7-0 Received character, Read
only.

Transmitter Status Register (kltcsr)
bit 7 Transmitter ready. This is
cleared when data is loaded
into the Transmitter Data
Buffer, and is set when the
latter is ready to receive
another chatacter;

bit 6 Transmitter Interrupt Enable.
(when set, causes an
interrupt to be generated
whenever bit 7 is set.)

Transmitter Data Buffer Register (kltbuf)
bits 7-0 Transmitted data. Write only.

24.10 UNIBUS Addresses

The Receiver Status Register always has its lowest
address starting on a four word boundary. (The ad-
dresses which follow are all 18 bit octal addresses.)
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Receiver Transmitter
Status Status
Operator’s console 777560 — 777566

776500 — 776506
776510 — 77656
776670 — 776676

Group Two

775610 — 775616
775620 — 775626
776170 — 776176

Apart from the operator’s console interface which
has its own standard UNIBUS location, the in-
terfaces are gathered into two groups (for reasons
which are irrelevant here). Within each group, by
convention, registers are allocated in consecutive lo-
cations starting at the lowest address.

Group Three

24.11 Software Considerations

“NKL11” (8011) must be set to define, for a par-
ticular installation, the number of interfaces in the
first two groups, and “NDL11” (8012), the nmber
in the third group. Any hardware alterations which
changed the actual number of interfaces would have
to be reflected in the software by changing and re-
comiling “kl.c”, and relinking the operaing system.

It will be seen that “klopen” calculates the cor-
rect kernel mode address (16 bits) for the Receiver
Status Register for each interface, and this is stored
(8044) into the the “t_addr” element of the appro-
priate “tty” structure.

24.12 Interrupt Vector Addresses

The vector addresses for the first interface are 060
and 064 (for receiver and transmitter interrupts, re-
spectively). Additional DL11/KL11 interfaces have
vector addresses which are always at least 0300, and
which are assigned according to rules which take
into consideration other interfaces which may be
present.

The second word of an interrupt doubiet is the
“new processor status” word. The five low order
bits of this word may be chosen arbitrarily, and
are in fact used to define the minor device number
(cf. a similar use to distinguish the various kinds
of “traps” — see Sheet 05). A masked version of
the new processor status word is provided to the
interrupt handling routines as the parameter “dev”
(see e.g. line 8070).

24.13 Source Code

We can now turn to a detailed study of the code in
the files “kl.c” (Sheet 80) and “tty.c” (Sheets 81 to



85). We shall look first at “opening” and “closing”
terminals as character special files and the handling
of interrupts. Then in the next chapter we shall
look at the receipt of data from the terminal, and
finally transmission of data to the terminal.

“klread” (8062), “klwrite” (8066) and “klsgtty”
(8090) have already been discussed above.

24.14 klopen (8023)

This procedure is called to “open” a terminal as a
character special file. This call is usually made by
the program “/etc/init” for each terminal which is
to be active in the system. Since child processes in-
herit the open files of their parents, it is not usually
necessary for other processes to “open” the device
again. It will be noted that the there is no attempt
to stop two unrelated processes having the terminal
as an open file simultaneously.

8026: Check the minor device number;
8030: Locate the appropriate “tty” structure;

8031: If the process opening the file has no asso-
ciated controlling terminal designate the cur-
rent terminal for this role. (Note that the ref-
erence stored is the address of a “tty” struc-
ture.):

8033: Store the terminal device number in the
“tty” structure

8039: Calculate the address of the appropriate set
of device registers for the terminal and store

8045: If the terminal is not already “open”, do
some initialisation of the “tty” structure ..

8046: “t_state” is set to show the file is “open”, so
that the next three lines will not be executed
if the file is opened a second time, possibly
undoing the effect of a “stty” system call:

“t_state” is also set to show “CARR_ON”
(“carrier on”). This is a software flag which
shows that the terminal is logically enabled,
regardless of the true hardware status of the
terminal. If “CARR_ON” is reset for a termi-
nal, the system should ignore all input from
the terminal.

(This does not seem to be entirely true, and
this point will be taken up again later.);

8047: The standard terminal is assumed to be un-
able to interpret horizontal tabs, to support
only the 64 character ASCII subset, to run in
full duplex mode and to require both “car-
riage return” and “line feed” characters to
provide normal “new line” processing. (Could
this be a Model 33 teletype?);

8048: The “erase” and “kill” characters are set ac-
cording to the UNIX convention;

8051: The Receiver Control Status register is ini-
tialised with the pattern “0103” so that the
terminal is made ready, reading is enabled
and receiver interrupts are enabled;

8052: The Transmitter Control Status register is
initialised so that an interrupt will be gener-
ated whenever the interface is ready to receive
another character.

Note that the “open” routine does not distin-
guish between the cases where the file is opened for
reading only, or writing only, or for both reading
and writing.

24.15 klclose (8055)

8057: Find the address of the appropriate “tty”
structure in the array of such structures,
“kl11” (8015). (This operation may be ob-
served in all the procedures in the second col-
umn of Sheet 80, and its relevance should be
noted.)

8058: “wflushtty” (8217) allows the output queue
for the terminal to “drain” and then flushes
the input queue

8059: “t_state” is reset so that “ISOPEN” and
“CARR.ON” are no longer true.

24.16 klxint (8070)

This procedure is executed in response to a trans-
mitter interrupt. It should be compared with
“pepint” (8739) and “Ipint” (8976). Note that the
parameter “dev” is a masked version (low order five
bits preserved) of the “new processor status” word
in the interrupt vector. Provided the vector was
properly initialised, the minor device number will
be properly identified.

The second part of the test on line 8074 will be
discussed at the end of the next chapter.

24.17 klrint (8078)

This procedure is executed in response to a re-
ceiver interrupt. It is not so readily compared with
“pcrint” (8719) although similarities certainly ex-
ist.

8083: Read the input character from the Receiver
Data Buffer register;

8084: Enable the receiver for the next character;
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8085: The comment says “hardware botch”. Bet-
ter believe it;

8086: Pass the character to “ttyinput” to insert it
into the appropriate “raw” input queue.
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25 The File “tty.c”

In this, the last chapter, the intricacies of interac-
tive terminal handlers are finally unveiled, includ-
ing:

(a) the handling of the “erase” and kill characters;

(b) the conversion of characters during input and
output for upper case only terminals;

(c) the insertion of delays after various special
characters such as “carriage return”.

The routines “gtty” (8165), “stty” (8183), “sgtty”
82al) and “ttystty” (8577) were dealt within the
previous chapter.

25.1 flushtty (8252)

The purpose of this procedure is to “normalise” the
queries associated with a particular terminal. Its
effect is to terminate transmission to the terminal
forthwith and to throw away any accumulated input
characters.

8258: Throw away everything in the “cooked” in-
put queue;

8259: ditto for the output queue;

8260: Wakeup any process waiting to extract a
character from the “raw” input queue;

8261: ditto for the output queue;

8263: Raise the processor priority to prevent an
interrupt from the terminal while ...

8264: the “raw” input queue is flushed,

8265: the “delimiter count” is properly set to zero.

“fHushtty” is called by “wflushtty” (see below) and
“ttyinput” (8346, 8350) when either:

(a) the terminal is not operating in “raw” mode
and a “quit” or “delete” character is received
from the terminal; or

(b) the “raw” input queue has grown unreasonably
large (presumably because no process is read-
ing input from the terminal);

25.2 wflushtty (8217)

This procedure waits until the queue of characters
for a terminal is empty (because they’ve all been
sent!) and then calls “flushtty” to clean up the
input queues.

“wilushtty” is called (3053) by “klclose”. This
does not happen very often — in fact only when all

files referencing the terminal are closed i.e. usually
only when the user logs off.

It is also called by “ttystty” (8589) just before
the terminal environment parameters are adjusted.

25.3 Character Input

For a program requesting input from a terminal,
there is a chain of procedure calls which extends to
“ttread” ...

25.4 ttread (8535)
8541: Check that the terminal is logically active;

8543: If there are characters in the “cooked” input
queue or a call on “canon” (8274) is successful

8544: transfer characters from the “cooked” input
queue until either it is empty or enough char-
acters have been transferred to suit the user’s
requirements.

25.5 canon (8274)

This procedure is called by “ttread” (8543) to
transfer characters from the “raw” input queue to
the “cooked” input queue (after processing “erase”
and “kill” characters and, in the case of upper
case only terminals, processing “escaped” charac-
ters, i.e. characters preceded by the character ‘\’).
“canon” returns a non-zero value if the “cooked”
input queue is no longer empty.

8284: If the number of delimiters in the “raw” in-
put queue is zero then ...

8285: if the terminal is logically inactive, then just
return;

8286: otherwise go to “sleep”.

Note that delimiters in this context are characters
of all ones (octal value is 377) and are inserted by
“ttyinput” (8358).

8291: Set “bp” to point to the third character of
the work array, “canonb”;

8292: Begin a loop (extending to line 8318) which
removes one character from the “raw” queue
per cycle;

8293: If the character is a delimiter, reduce the
delimiter count by one and exit the loop i.e.
go to line 8319;

13 7

8297: If the terminal is not operating in “raw

mode ...
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8298: If the previous character (note the “bp[-1]”
notation!) was not a backslash, ‘\’, execute
the code from line 8299 to 8307, otherwise
execute the code beginning at line 8309.

Previous character was not a backslash

8299: If the characters is an “erase” and ...

8300: if there is at least one charater to erase,
backup the pointer “bp”;

8302: Start on the next cycle of the loop beginning
at line 8292;

8304: If the characteris a “kill”, throw away all the
characters accumulated for the current line,
by going back to line 8290;

8306: If the character is an “eot” (004) (usually
generated at the terminal as “control-D”), ig-
nore it (and do not put it inot “canonb”) and
start on the next cycle;

(If this character occurs at the beginning
of a line, then subsequently “ttread” (8544)
will find no characters in the “cooked” input
queue i.e. it will read a zero length record,
which then leads to the program receiving the
normal “end of file” indication.)

Previous character was a backslash

8309: If “maptab|c]” is non-zero, and either
“maptab[c] == ¢” or the terminal is upper
case only, then ...

8310: if the last character but one was not a back-
slash (‘\’), then replace “c” by “maptablc]”’
and back up “bp” (so that the backslash will
be erased).

Character ready

8315: Move “c” into the next character in “canonb”

and if this array is now full, leave the loop.
Line completed

8319: At this point, an input line has been assem-
bled in the array “canonb”;

8322: Shift the contents of “canonb” into the

“cooked” input queue, and return a “success-
ful” result.
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25.6 Notes

(A) Thereason why “bp” starts (8291) at the third
character of “canonb” can be found on line
8310.

(B) A number of subtleties in the handling of back-
slashes (which the reader will no doubt have
encountered in his practical use of UNIX)
are still not immediately apparent. Since
“maptablc]” is zero for “c == ‘\’ ” (octal
value of 134), all backslashes get copied into
“canonb”. A single backslash will be subse-
quently overwritten if the following character
is to be asserted (as in the case of ‘#’ or ‘@’
or eot (004), or if the case of an alphabetic
character is to be changed for an upper case
only terminal.

25.7 ttyinput (8333)

“canon” removes characters from the “raw” input

queue. They are put there in the first place by “tty-
input” which is called by “klrint” (8087) whenever
an input character is received from the hardware
controller.

The parameters passed to “ttyinput” are a char-
acter and a reference to a “tty” structure.

8342: If the character is a “carriage return” and
the terminal operates with a “carriage re-
turn” only (instead of a “carriage return”
“line feed” pair) change the character to a
“new line”;

« 7

8344: If the terminal is not operating in “raw
mode and the character is a “quit” or “delete”
(7958) then call “signal” (3949) to send a soft-
ware interrupt to every process which has the
terminal as its controlling terminal, flush all
the queues associated with the terminal, and
return;

8349: If the “raw” input queue has grown exces-
sively large, flush all the queues for the ter-
minal and return. (This may seem a trifle
harsh at first sight but it will usually be what
is required.);

8353: If the terminal has a limited character set,
and the character is an upper case alphabetic,
translate it into lower case;

8355: Insert the character into the “raw” input
queue;

8356: If the terminal is operating in “raw” mode,
or the character was a “new line” or “eot”
then ...



8357: “wakeup” any process waiting for input from
the terminal, place a delimiter character (all
ones) also in the “raw” queue and increment
the delimiter count Note this is one point
where possible failure of “putc” (when there
is no buffer space) is explicitly recognised. A
failure occurring here would explain why the
test on line 8316 may sometimes succeed.

8361: Finally, if the input character is to be echoed
i.e. the terminal is running in full duplex
mode, insert a copy of the character into the
output queue, and and arrange to have it
transmitted (“ttstart”) back to the terminal.

25.8 Character Output — ttwrite (8550)

This procedure is called via “klwrite” (8067) when
output is to be sent to the terminal.

8556: If the terminal is inactive, do nothing;
8558: Loop for each character to be transmitted ...

8560: While there are still an adequate number of
characters queued for transmission to the ter-
minal ...

8561: call “ttstart” just in case it is time to send
another character to the terminal;

8562: Setting the “ASLEEP” flag here (also in
“wilushtty” (8224)) is rather pointless since is
is never interrogated and never reset until the
file is closed;

8563: Go to sleep. In the meanwhile the interrupt
handler will be draining characters from the
output queue and sending them down the line
to the terminal;

8566: Call “ttyoutput” to insert the character in
the output queue and arrange to have it trans-
mitted;

8568: Call “ttstart” again, for luck.

25.9 ttstart

This procedure is called whenever it seems reason-
able to try and send the next character to the ter-
minal. It often achieves nothing useful.

8514: See the comment on line 8499. This code is
not relevant here;

8518: If the controller is not ready (i.e. bit 7 of the
transmitter stalus register is not set) or the
necessary delay following the preious charac-
ter has not yet elapsed, do nothing;

8520: Remove a character from the output queue.
If “¢” is positive, the queue was not empty
(as expected) ...

8521: If “c” is less than “0177” it is a character to
be transmitted ...

8522: After setting the parity bit from the corre-
sponding element of the array “partab”, write
“c” to the transmitter data buffer register to
initiate the hardware operation;

8524: Otherwise (“c” > 0177) the character was
inserted in the output queue to signal a de-
lay. Call “timeout” (3845) to make an entry
in the “callout” list. The result of this will be
to initiate an execution of “ttrstrt” (8486) af-
ter “c & 01777 clock ticks . It will be seen that
“ttrstrt” calls “ttstart” again, and that the
manipulation of the “TIMEOUT” flag (8524,
8491) will ensure that if another execution of
“ttstart” is initiated in the interim, on be-
half of the same terminal, it will (8518) return
without doing anything.

25.10 ttrstrt (8486)

See the comment above for line 8524.

25.11 ttyoutput (8373)

This procedure has more comments in the source
code and hence requires less explanation than some
others. Note the use of recursion (8392) to generate
a string of blanks in place of a tab character. Other
recursive calls are on lines 8403 and 8413.

25.12 Terminals with a restricted char-

acter set

8400: “colp” points to a string of pairs of char-
acters. If the character to be output matches
the second character of any of these pairs, the
charactcr is replaced by a backslash followed
by the first character of the pair;

8407: Lower case alphabetics are converted to up-
per case alphabetics by the addition of a con-
stant.

Note. The conversion here should be compared wth
the handling of the reverse problem on input. Here
we have an algorithm which clearly trades space
(no table analogue to “maptab”) for time (a serial
search through the string on line 8400). A space
conserving approach could be adopted in “canon”
but the problem is rather more complicated there.
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8414: Insert the character into the output queue.
If perchance, “putc” fails for lack of buffer
space, don’t worry about inserting any subse-
quent delay, or updating the system’s idea of
the current printing column;

8423: Set “colp” to point to the “t_col” character
of the “tty” structure, i.e. “*colp” has a value
which is the ordinal number of the column
which has just been printed;

8424: Set “ctype” to the element of “partab” cor-
responding to the output character “c”;

8426: Mask out the significant bits of “ctype” and
use the result as the “switch” index;

8428: (Case 0) The common situation! Increment
“t_COI”;

8431: (Case 1) Non-printing characters.  This
group consists of the first, third and fourth
octet of the ASCII character set, plus “so”
(016), “si” (017) and “del” (0177). Don’t in-
crement “t_col”;

8434: (Case 2) Backspace. Decrement “t_col” un-
less it is already zero;

8439: (Case 3) Newline. Obviously “t_col” should
be set to zero. The main problem is to cal-
culate the delay which should ensue before
another character is sent.

For a Model 37 teletype, this depends on how
far the print mechanism has progressed across
the page. The value chosen is at least a tenth
of a second (six clock ticks) and may be as
much as ((132/16) + 3)/60 = 0.19 seconds.

For a VTO05, the delay is 0.1 second. For a
DECwriter it is zero because the terminal in-
corporates buffer storage and has a double
speed “catch up” print mode;

8451: (Case 4) Horizontal tab. Assign the value of
bits 10, 11 of “t_flags” to “ctype”;

8453: For the only non-trivial case recognised
(“c” == 1 or Model 37 teletype), calculate the
the number of positions to the next tab stop
(via the obscure calculation of line 8454). If
this turns out to be four columns or less, take
it as zero;

8458: Round “*colp” (i.e. the value pointed to by
“colp”!) to the next multiple of 8 less one;

8459: Increment “*colp” to be an exact multiple
of eight;
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8462: (Case 5) Vertical Motion. If bit 14 is set in
“t_flags”, make the delay as long as possible,
i.e. 0177 or 127 clock ticks, i.e. just over two
seconds;

8467: (Case 6) Carriage Return. Assign the value
of bits 12, 13 of “t_flags” to “ctype”;

8469: For the first class, allow a delay of five clock
ticks;

8472: For the second class, allow a delay of ten
clock ticks;

8475: Set the “*colp” (the last column printed) to
Zero.

Before leaving the file “tty.c”, there are two mat-
ters which deserve further examination.

25.13 A. The test for "TTLOWAT’
(Line 8074)

On line 8074 in “klxint”, a test is made whether to
restart any processes waiting to send output to the
terminal. The test is successful if the number of
characters is zero or if it is equal to “TTLOWAT”.

If the number of characters is between these val-
ues, no “wakeup” is performed until the queue is
completely empty, with the strong likelihood that
there will then be a hiatus in the flow of output
to the terminal. Since temporary interruptions to
the flow of output are quite frequently observed in
practice and represent a source of occasional irrita-
tion if nothing more, one may reasonably enquire
“is there any way the character count can get from
being greater than “TTLOWAT” to below it, with-
out this being detected at line 80747”

Quite clearly there is, since each call on “ttstart”
can decrement the queue size, and only one such call
is followed by the test. Thus if the call on “ttstart”
from one of “ttrstrt” (8492) or “ttwrite” (8568)
happens to cross the boundary, a delay will result.
The probability that this will happen is small, but
finite and hence the event is likely to be observed
in any reasonably long output sequence.

There are two other situations in which “ttstart”
is called which seem to be satisfactory. At “ttwrite”
(8561) the queue is at its maximum extent; and at
“ttyinput” (8363) there is a preceding call on “tty-
output” which usually (but not invariably!) will
have added a character to the output queue.

25.14 B. Inactive Terminals

When the last special file for a terminal is closed,
“klclose” (8055) is called and resets (8059) the
“ISOPEN” and “CARR_ON” flags. However the



“read enable” bit of the receiver control status reg-
ister is not reset, so that incoming characters may
still be received and will be stored away (8087)
in the terminal’s “raw” input queue by “klrint”
(8078), and “ttyinput” (8333), which do not test
the “CARR_ON” flag, to see if the terminal is log-
ically connected.

These characters may accumulate for a long
time and clog up the character buffer storage. Only
when the “raw” input queue reaches 256 charac-
ters (“TTYHOG”, 8349) will the contents of this
queue be thrown away. It does seem therefore, that
a statement to disable reader interrupts should be
included in “klclose” before line 8058.

25.15 Well, that’s all, folks ...

Now that you, oh long-suffering, exhausted reader
have reached this point, you will have no trouble in
disposing of the last remaining file, “mem.c” (Sheet
90). And on this note, we end this discussion of the
UNIX Operating System Source Code.

Of course there are lots more device drivers for
your patient examination, and in truth the whole
UNIX Timesharing System Source Code has hardly
been scratched. So this is not really

THE END
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26 Suggested Exercises

Any operating system design involves many subjec-
tive and ad hoc judgements on the part of system’s
designers. At many places in the UNIX source code
you will find yourself wondering “Why did they do
it that way?”, “What would happen if I changed
this?”

The following exercises express some of these
questions. Some can be answered from an examina-
tion of the source code alone after a study in more
depth; others require some experimental probing
and measurement, for which read-only access to the
file “/dev/kmem” via terminal will prove invalu-
able; and still others really require the construction
and testing of experimental versions of the operat-
ing system.

26.1 Section One

1.1 Devise changes to “malloc” (2528) to imple-
ment the Best Fit algorithm.

1.2 Rewrite the procedure “mfree” (2556) to ren-
der its function more easily discernible by the
reader.

1.3 Investigate the adequacy of the sizes of the ar-
rays “coremap” and “swapmap” (0203, 0204).
How should “CMAPSIZ” and “SWAPSIZ”
change when “NPROC” is increased?

1.4 Prove that “malloc” and “mfree” jointly solve
the memory aliocation problem correctly.

1.5 By monitoring the contents of “coremap”, esti-
mate the efficiency with which main memory
is utilised. Estimate also the cost of compact-
ing “in use areas” of main memory from time
to time to reduce memory fragmentation.

Hence decide whether it would be worth-
while to extend the present memory alloca-
tion scheme to include memory compaction.

1.6 In setting the first six kernel page description
registers, UNIX does not make use of all the
hardware protection features that are avail-
able e.g. some pages which contain only pure
text could be made read-only. Devise changes
to the code to maximise the use of the avail-
able hardware protection.

1.7 Compile the program

char *init ‘‘/etc/init’’;
main ( ) {

execl (init, init, 0);
while (1);

}
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and compare the result with the contents of
the array “icode” (1516).

1.8 Investigate the size required for kernel mode
stack areas. Hence show that the 367 word
area which is provided is adequate.

1.9 If main memory consists of several independent
memory modules and one of these, not the
last, is down, “main” will not include mem-
ory modules beyond the one which is down, in
the list of available space in “coremap”. De-
vise some simple changes to “main” to handle
this situation. what other parts of the system
would also need revision?

1.10 Rewrite the routines “estabur” (1650) and
“sureg” (1739) so that they will work as ef-
ficiently as possible on the PDP11/40. How
often are these routines used in practice?
Would it really be worthwhile trying to im-
plement your improved versions?

1.11 Investigate the overheads involved in initiat-
ing a new process. Perform a series of mea-
surements for a set of different sized programs
under different conditions.

1.12 Evaluate the following scheme which is in-
tended by Ken Thompson as the basis for a
revised scheduling algorithm:

A number “p” is kept for each process, stored
as “p_cpu”. “p” is incremented by one every
clock tick that the process is found to be ex-
ecuting. “p” therefore accumulates the CPU
usage. Every second, each value of “p” is re-
placed by four fifths of its value rounded to
the nearest integer. This means that “o” has
values which are bounded by zero and the so-
lution of the equation k = 0.8 % (k+ HZ) i.e.
4*HZ. Hence if HZ is 50 or 60, and “p” is

integerised, “p” can be stored in one byte.

1.13 The “proc” table is always searched via a di-
rect linear search. As the table size is in-
creased, the search overheads also increase.
Survey the alternatives for improving the
search mechanism, when “NPROC” is say
300.

26.2 Section Two

2.1 Explain in detail how the system reacts to a
floating point trap which occurs when the pro-
cessor is in kernel mode.

2.2 When a process dies, a “zombie” record is writ-
ten to disk, and is subsequently read back by
the parent. Devise a scheme for passing back



the necessary information to the parent which
will avoid the overhead of the two i/o opera-
tions.

2.3 Document “backup” (1012).

2.4 Tt is relatively easy using the “shell” to set up a
set of asynchronous processes which will flood
your terminal with useless output. Trying
to stop these processes individually can be a
problem, since their identifying numbers may
not be known. Use of the command “kill 0”
is usually an act of sheer desperation. Devise
an alternative scheme, e.g. based on the use
of messages such as “kill -99”, which will be
effective, but more selective.

2.5 Design a form of coroutine jump whlch will
cause control to pass more efficiently between
a program which is being traced, and its par-
ent.

26.3 Section Three

3.1 Rewrite the procedure “sched” to avoid the use
of “goto” statements.

3.2 Modify “sched” so that the text segment and
data segment for a program will possibly be
allocated in separate main memory areas if a
single large area is not immediately available.

3.3 If the system crashes and must be “rebooted”
the contents of the buffers which were not
written out at the time of the crash are lost.

However if a core dump is taken, the con-
tents of the buffers can be obtained and hence
the contents of the disk can be brought com-
pletely up to date. Outline a detalled plan
for carrying out this scheme. How effective
do you think it would be?

3.4 Explain why the buffer areas declared on line
4720 are 514, and not 512, characters long.

3.5 Explain how deadlock situations may arise if
there are too few “large” buffers available.
What measures can you suggest to alleviate
the problem, assuming that increasing the
number of buffers is not possible.

26.4 Section Four

4.1 Devise a scheme for labelling file system vol-
umes and checking these labels when the vol-
umes are mounted.

4.2 Discuss the problems of supporting ANSI stan-
dard labelled tapes under UNIX, and propose
a solution.

4.3 Design a scheme for providing index sequential
access to files.

4.4 The emergence of the “sticky bit” (see “CHMOD(I)”

in the PM) confirms that there are some resid-
ual advantages in allocating all the space for
a file contiguously. Discuss the merits of mak-
ing “contiguous files” more generally avail-
able.

4.5 Devise a technique to measure the efficiency of
pipes. Apply the technique and report your
results.

4.6 Devise modifications to “pipe.c” which will
make pipes more efficient according to the fol-
lowing scheme: whenever the “read” pointer
is greater than 512, rotate the non-null block
numbers in the “inode” ana decrease both the
“read” and “write” pointers by 512.

5.1 By monitoring the number of free buffers or
otherwise, determine whether the number of
character buffers provided at your installation
is adequate.

5.2 Perform measurements and/or experiments to
determine whether the character buffer blocks
would be more efficiently utilised if they con-
sisted of four or eight characters, rather than
six, per block.

5.3 Redesign the line printer driver to handle over-
printing and backspacing more efficiently in
the sense of minimising the number of print
cycles.

5.4 Document “mmread” (0916) and “mmwrite”
(9042).

26.5 General

6.1 The easiest way to vary the main memory
space used by the operating system is to vary
“NBUF”. If this is forbidden, propose the best
way to:

(a) reduce the space required by 500 words;
(b) utilise an additional 500 words.
6.2 Discuss the merits of “C” as a systems pro-

gramming language. What features are miss-
ing? or superfluous?
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