

How to Tango with Django 1.9
A beginners guide to Python/Django

Leif Azzopardi and David Maxwell

This book is for sale at http://leanpub.com/tangowithdjango19

This version was published on 2017-01-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2017 Leif Azzopardi and David Maxwell

http://leanpub.com/tangowithdjango19
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Leif Azzopardi and David Maxwell by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I’m now ready to Tango with Django @tangowithdjango

The suggested hashtag for this book is #tangowithdjango.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#tangowithdjango

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20now%20ready%20to%20Tango%20with%20Django%20@tangowithdjango
https://twitter.com/search?q=%23tangowithdjango
https://twitter.com/search?q=%23tangowithdjango

CONTENTS

Contents

1. Overview . 1
1.1 Why Work with this Book? . 1
1.2 What you will Learn . 2
1.3 Technologies and Services . 3
1.4 Rango: Initial Design and Specification . 4
1.5 Summary . 10

2. Getting Ready to Tango . 12
2.1 Python . 12
2.2 The Python Package Manager . 13
2.3 Virtual Environments . 14
2.4 Integrated Development Environment . 14
2.5 Code Repository . 15

3. Django Basics . 16
3.1 Testing Your Setup . 16
3.2 Creating Your Django Project . 17
3.3 Creating a Django Application . 20
3.4 Creating a View . 22
3.5 Mapping URLs . 23
3.6 Basic Workflows . 25

4. Templates and Media Files . 28
4.1 Using Templates . 28
4.2 Serving Static Media Files . 33
4.3 Serving Media . 39
4.4 Basic Workflow . 42

5. Models and Databases . 44
5.1 Rango’s Requirements . 44
5.2 Telling Django about Your Database . 45
5.3 Creating Models . 46
5.4 Creating and Migrating the Database . 48
5.5 Django Models and the Shell . 50

www.tangowithdjango.com

CONTENTS

5.6 Configuring the Admin Interface . 51
5.7 Creating a Population Script . 54
5.8 Workflow: Model Setup . 59

6. Models, Templates and Views . 63
6.1 Workflow: Data Driven Page . 63
6.2 Showing Categories on Rango’s Homepage . 63
6.3 Creating a Details Page . 66

7. Forms . 78
7.1 Basic Workflow . 78
7.2 Page and Category Forms . 79

8. Working with Templates . 90
8.1 Using Relative URLs in Templates . 90
8.2 Dealing with Repetition . 92
8.3 Template Inheritance . 95
8.4 The render() Method and the request Context 98
8.5 Custom Template Tags . 99
8.6 Summary . 102

9. User Authentication . 103
9.1 Setting up Authentication . 103
9.2 Password Hashing . 104
9.3 Password Validators . 105
9.4 The User Model . 105
9.5 Additional User Attributes . 106
9.6 Creating a User Registration View and Template 108
9.7 Implementing Login Functionality . 115
9.8 Restricting Access . 119
9.9 Logging Out . 121
9.10 Taking it Further . 122

10. Cookies and Sessions . 124
10.1 Cookies, Cookies Everywhere! . 124
10.2 Sessions and the Stateless Protocol . 126
10.3 Setting up Sessions in Django . 127
10.4 A Cookie Tasting Session . 128
10.5 Client Side Cookies: A Site Counter Example . 129
10.6 Session Data . 132
10.7 Browser-Length and Persistent Sessions . 134
10.8 Clearing the Sessions Database . 135
10.9 Basic Considerations and Workflow . 135

www.tangowithdjango.com

CONTENTS

11. User Authentication with Django-Registration-Redux 137
11.1 Setting up Django Registration Redux . 137
11.2 Functionality and URL mapping . 138
11.3 Setting up the Templates . 139

12. Bootstrapping Rango . 143
12.1 The New Base Template . 144
12.2 Quick Style Change . 146
12.3 Using Django-Bootstrap-Toolkit . 155

13. Bing Search . 157
13.1 The Bing Search API . 157
13.2 Adding Search Functionality . 160
13.3 Putting Search into Rango . 167

14. Making Rango Tango! Exercises . 171
14.1 Track Page Clickthroughs . 172
14.2 Searching Within a Category Page . 173
14.3 Create and View Profiles . 173

15. Making Rango Tango! Hints . 175
15.1 Track Page Clickthroughs . 175
15.2 Searching Within a Category Page . 177
15.3 Creating a UserProfile Instance . 180
15.4 Viewing your Profile . 185
15.5 Listing all Users . 189

16. JQuery and Django . 192
16.1 Including JQuery in Your Django Project/App . 192
16.2 DOM Manipulation Example . 195

17. AJAX in Django with JQuery . 197
17.1 AJAX based Functionality . 197
17.2 Add a Like Button . 198
17.3 Adding Inline Category Suggestions . 200

18. Automated Testing . 208
18.1 Running Tests . 208
18.2 Coverage Testing . 212

19. Deploying Your Project . 215
19.1 Creating a PythonAnywhere Account . 215
19.2 The PythonAnywhere Web Interface . 215
19.3 Creating a Virtual Environment . 217
19.4 Setting up Your Web Application . 220

www.tangowithdjango.com

CONTENTS

19.5 Log Files . 224

20. Final Thoughts . 225
20.1 Acknowledgements . 225

Appendices . 226

Setting up your System . 227
Installing Python . 227
Setting Up the PYTHONPATH . 230
Using setuptools and pip . 231
Virtual Environments . 233
Version Control . 234

A Crash Course in UNIX-based Commands . 235
Using the Terminal . 235
Core Commands . 239

A Git Crash Course . 241
Why Use Version Control? . 241
How Git Works . 242
Setting up Git . 243
Basic Commands and Workflow . 247
Recovering from Mistakes . 253

A CSS Crash Course . 256
Including Stylesheets . 258
Basic CSS Selectors . 258
Element Selectors . 259
Fonts . 260
Colours and Backgrounds . 261
Containers, Block-Level and Inline Elements . 264
Basic Positioning . 266
The Box Model . 275
Styling Lists . 276
Styling Links . 278
The Cascade . 280
Additional Reading . 281

www.tangowithdjango.com

1. Overview
The aim of this book is to provide you with a practical guide to web development using Django and
Python. The book is designed primarily for students, providing a walkthrough of the steps involved
in getting a web application up and running with Django.

This book seeks to complement the official Django Tutorials andmany of the other excellent tutorials
available online. By putting everything together in one place, this book fills in many of the gaps in
the official Django documentation providing an example-based design driven approach to learning
the Django framework. Furthermore, this book provides an introduction to many of the aspects
required to master web application development (e.g. HTML, CSS, JavaScript, etc.).

1.1 Why Work with this Book?

This book will save you time. On many occasions we’ve seen clever students get stuck, spending
hours trying to fight with Django and other aspects of web development. More often than not, the
problem was usually because a key piece of information was not provided, or something was not
made clear. While the occasional blip might set you back 10-15 minutes, sometimes they can take
hours to resolve. We’ve tried to remove as many of these hurdles as possible. This will mean you
can get on with developing your application instead of stumbling along.

This book will lower the learning curve.Web application frameworks can save you a lot of hassle
and lot of time. Well, that is if you know how to use them in the first place! Often the learning curve
is steep. This book tries to get you going - and going fast by explaining how all the pieces fit together.

This book will improve your workflow. Using web application frameworks requires you to pick
up and run with a particular design pattern - so you only have to fill in certain pieces in certain
places. After working with many students, we heard lots of complaints about using web application
frameworks - specifically about how they take control away from them (i.e. inversion of control).
To help you, we’ve created a number of workflows to focus your development process so that you
can regain that sense of control and build your web application in a disciplined manner.

This book is not designed to be read. Whatever you do, do not read this book! It is a hands-on
guide to building web applications in Django. Reading is not doing. To increase the value you gain
from this experience, go through and develop the application. When you code up the application,
do not just cut and paste the code. Type it in, think about what it does, then read the explanations
we have provided to describe what is going on. If you still do not understand, then check out the
Django documentation, go to Stack Overflow or other helpful websites and fill in this gap in your
knowledge. If you are really stuck, get in touch with us, so that we can improve this resource - we’ve
already had contributions from numerous other readers!

https://docs.djangoproject.com/en/1.9/intro/tutorial01/
https://en.wikipedia.org/wiki/Inversion_of_control
http://stackoverflow.com/questions/tagged/django

Overview 2

1.2 What you will Learn

In this book, we will be taking an exampled-based approach. The book will show you how to design
a web application called Rango (see the Design Brief below). Along the way, we’ll show you how to
perform the following key tasks.

• How to setup your development environment - including how to use the terminal, your
virtual environment, the pip installer, how to work with Git, and more.

• Setup a Django project and create a basic Django application.
• Configure the Django project to serve static media and other media files.
• Work with Django’s Model-View-Template design pattern.
• Create database models and use the object relational mapping (ORM) functionality provided
by Django.

• Create forms that can utilise your database models to create dynamically generated web-
pages.

• Use the user authentication services provided by Django.
• Incorporate external services into your Django application.
• Include Cascading Styling Sheets (CSS) and JavaScript within a web application.
• Apply CSS to give your application a professional look and feel.
• Work with cookies and sessions with Django.
• Include more advanced functionality like AJAX into your application.
• Deploy your application to a web server using PythonAnywhere.

At the end of each chapter, we have included a number of exercises designed to push you harder
and to see if you can apply what you have learned. The later chapters of the book provide a number
of open development exercises along with coded solutions and explanations.

Exercises will be clearly delineated like this!
In each chapter we have added a number of exercises to test your knowledge and skill.

You will need to complete these exercises as the subsequent chapters are dependent on them.

Don’t worry if you get stuck, though, as you can always check out our solutions to all the
exercises on our GitHub repository.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Object-relational_mapping
https://github.com/leifos/tango_with_django_19

Overview 3

1.3 Technologies and Services

Through the course of this book, we will used various technologies and external services including:

• Python
• Pip package manager
• Django
• Git
• GitHub
• HTML
• CSS
• JavaScript
• JQuery
• Twitter Bootstrap
• Bing Search API via Azure Datamarket
• PythonAnywhere

We’ve selected these technologies and services as they are either fundamental to web development,
and/or enable us to provide examples on how to integrate your web application with CSS toolkits
like Twitter Bootstrap, external services like those provided by Microsoft Azure and deploy your
application quickly and easily with PythonAnywhere.

www.tangowithdjango.com

http://www.python.org/
http://www.pip-installer.org/
https://www.djangoproject.com/
http://git-scm.com/
https://github.com/
http://www.w3.org/html/
http://www.w3.org/Style/CSS/
https://www.javascript.com/
http://jquery.com/
http://getbootstrap.com/
http://datamarket.azure.com/
https://www.pythonanywhere.com/

Overview 4

1.4 Rango: Initial Design and Specification

The focus of this book will be to develop an application called Rango. As we develop this application,
it will cover the core components that need to be developed when building any web application. To
see a fully functional version of the application, you can visit the How to Tangowith Djangowebsite.

Design Brief

Your client would like you to create a website called Rango that lets users browse through user-
defined categories to access various web pages. In Spanish, the word rango is used to mean “a league
ranked by quality” or “a position in a social hierarchy”.

• For the main page of the Rango website, your client would like visitors to be able to see:
– the five most viewed pages;
– the five most viewed (or rango’ed) categories; and
– some way for visitors to browse or search through categories.

• When a user views a category page, your client would like Rango to display:
– the category name, the number of visits, the number of likes, along with the list of
associated pages in that category (showing the page’s title, and linking to its URL); and

– some search functionality (via Bing’s Search API) to find other pages that can be linked
to this category.

• For a particular category, the client would like: the name of the category to be recorded; the
number of times each category page has been visited; and how many users have clicked a
“like” button (i.e. the page gets rango’ed, and voted up the social hierarchy).

• Each category should be accessible via a readable URL - for example, /rango/books-about-
django/.

• Only registered users will be able to search and add pages to categories. Visitors to the site
should therefore be able to register for an account.

At first glance, the specified application to develop seems reasonably straightforward. In essence,
it is just a list of categories that link to pages. However, there are a number of complexities and
challenges that need to be addressed. First, let’s try and build up a better picture of what needs to
be developed by laying down some high-level designs.

www.tangowithdjango.com

http://www.tangowithdjango.com/
https://www.vocabulary.com/dictionary/es/rango

Overview 5

Exercises
Before going any further, think about these specifications and draw up the following design
artefacts.

• An N-Tier or System Architecture diagram.
• Wireframes of the main and category pages.
• A series of URL mappings for the application.
• An Entity-Relationship (ER) diagram to describe the data model that we’ll be
implementing.

Try these exercises out before moving on - even if you aren’t familiar with system
architecture diagrams, wireframes or ER diagrams, how would you explain and describe
what you are going to build.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Overview 6

N-Tier Architecture

The high-level architecture for most web applications is a 3-Tier architecture. Rango will be a variant
on this architecture as it interfaces with an external service.

Overview of the 3-tier system architecture for our Rango application.

Since we are building a web application with Django, we will use the following technologies for the
following tiers.

• The client will be a Web browser (such as Chrome, Firefox, and Safari) which will render
HTML/CSS pages.

• Themiddlewarewill be a Django application, and will be dispatched through Django’s built-
in development Web server while we develop.

• The database will be the Python-based SQLite3 Database engine.
• The search API will be the Bing Search API.

For the most part, this book will focus on developing the middleware. It should however be quite
evident from the system architecture diagram that we will have to interface with all the other
components.

Wireframes

Wireframes are great way to provide clients with some idea of what the application should look like
when complete. They save a lot of time, and can vary from hand drawn sketches to exact mockups
depending on the tools that you have at your disposal. For our Rango application, we’d like to make
the index page of the site look like the screenshot below. Our category page is also shown below.

www.tangowithdjango.com

Overview 7

The index page with a categories search bar on the left, also showing the top five pages and top five categories.

www.tangowithdjango.com

Overview 8

The category page showing the pages in the category (along with the number of views). Below, a search for
Python has been conducted, with the results shown underneath.

Pages and URL Mappings

From the specification, we have already identified two pages that our application will present to the
user at different points in time. To access each page we will need to describe URL mappings. Think
of a URL mapping as the text a user will have to enter into a browser’s address bar to reach the
given page. The basic URL mappings for Rango are shown below.

• / or /rango/ will point to the main / index page.

www.tangowithdjango.com

Overview 9

• /rango/about/ will point to the about page.
• /rango/category/<category_name>/ will point to the category page for <category_name>,
where the category might be:

– games;
– python-recipes; or
– code-and-compilers.

As we build our application, we will probably need to create other URL mappings. However, the
ones listed above will get us started and give us an idea of the different pages. Also, as we progress
through the book, we will flesh out how to construct these pages using the Django framework and
use its Model-View-Template design pattern. However, now that we have a gist of the URLmappings
and what the pages are going to look like, we need to define the data model that will house the data
for our Web application.

Entity-Relationship Diagram

Given the specification, it should be clear that we have at least two entities: a category and a page.
It should also be clear that a category can house many pages. We can formulate the following ER
Diagram to describe this simple data model.

The Entity Relationship Diagram of Rango’s two main entities.

Note that this specification is rather vague. A single page could in theory exist in one or more
categories. Working with this assumption, we could model the relationship between categories and
pages as a many-to-many relationship. This approach however introduces a number of complexities,
so we will make the simplifying assumption that one category contains many pages, but one page
is assigned to one category. This does not preclude that the same page can be assigned to different
categories - but the page would have to be entered twice, which is not ideal.

Take Note!
Get into the habit of noting down any working assumptions that you make, just like
the one-to-many relationship assumption that we assume above. You never know when
they may come back to bite you later on! By noting them down, this means you can
communicate it with your development team andmake sure that the assumption is sensible
and that they are happy to proceed under such an assumption.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/
https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Overview 10

With this assumption, we then produce a series of tables that describe each entity in more detail.
The tables contain information on what fields are contained within each entity. We use Django
ModelField types to define the type of each field (i.e. IntegerField, CharField, URLField or
ForeignKey). Note that in Django primary keys are implicit such that Django adds an id to each
Model, but we will talk more about that later in the Models and Database chapter.

Category Model

Field Type

name CharField

views IntegerField

likes IntegerField

Page Model

Field Type

category ForeignKey

title CharField

url URLField

views IntegerField

We will also have a model for the User so that they can register and login. We have not shown it
here, but shall introduce it later in the book when we discuss User Authentication. In the following
chapters, will we see how to instantiate these models in Django and how to use the built-in ORM
to connect to the database.

1.5 Summary

These high level design and specifications will serve as a useful reference point when building our
Web application.While wewill be focusing on using specific technologies, these steps are common to
most database driven websites. It’s a good idea to become familiar with reading and producing such
specifications and designs so that you can communicate your designs and ideas with others. Here
we will be focusing on using Django and the related technologies to implement this specification.

www.tangowithdjango.com

Overview 11

Cut and Paste Coding
As you progress through the tutorial, you’ll most likely be tempted to cut and paste the code
from the book to your code editor. However, it is better to type in the code. We know
that this is a hassle, but it will help you to remember the process better and the commands
that you will be using later on.

Furthermore, cutting and pasting Python code is asking for trouble. Whitespace can end up
being interpreted as spaces, tabs or a mixture of spaces and tabs. This will lead to all sorts
of weird errors, and not necessarily indent errors. If you do cut and paste code be wary of
this. Pay particular attention to this if you’re using Python 3 - inconsistent use of tabs and
spaces in your code’s indentation will lead to a TabError.

Most code editors will show the whitespace and whether it is tabs or spaces. If so, turn it
on and save yourself a lot of confusion.

www.tangowithdjango.com

2. Getting Ready to Tango
Before we get down to coding, it’s really important that we get our development environment setup
so that you can Tango with Django! You’ll need to ensure that you have all the necessary components
installed on your computer. This chapter outlines the five key components that you need to be aware
of, setup and use. These are listed below.

• Working with the terminal or Command Prompt.
• Python and your Python installation.
• The Python Package Manager pip and virtual environments.
• Your Integrated Development Environment (IDE), if you choose to use one.
• A Version Control System (VCS), Git.

If you already have Python 2.7/3.4/3.5 and Django 1.9/1.10 installed on your computer, and are
familiar with the technologies mentioned, then you can skip straight to the Django Basics chapter.
Otherwise, below we provide an overview of the different components and why they are important.
We also provide a series of pointers on how to setup the various components.

Your Development Environment
Setting up your development environment is pretty tedious and often frustrating. It’s not
something that you’d do everyday. Below, we have put together the list of core technologies
you need to get started and pointers on how to install them.

From experience, we can also say that it’s a good idea when setting your development
environment up to note down the steps you took. You’ll need them again one day - whether
because you have purchased a new computer, or you have been asked to help someone else
set their computer up! Taking a note of everything you do will save you time and effort in
the future. Don’t just think short term!

2.1 Python

To work with Tango with Django, we require you to have installed on your computer a copy of the
Python programming language. Any version from the 2.7 family - with a minimum of 2.7.5 - or
version 3.4+will work fine. If you’re not sure how to install Python and would like some assistance,
have a look at the chapter dealing with installing Python.

https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Cmd.exe

Getting Ready to Tango 13

Not sure how to use Python?
If you haven’t used Python before - or you simply wish to brush up on your skills - then
we highly recommend that you check out and work through one or more of the following
guides:

• Learn Python in 10 Minutes by Stavros;
• The Official Python Tutorial;
• Think Python: How to Think like a Computer Scientist by Allen B. Downey; or
• Learn to Program by Jennifer Campbell and Paul Gries.

These will get you familiar with the basics of Python so you can start developing using
Django. Note you don’t need to be an expert in Python to work with Django. Python is
awesome and you can pick it up as you go, if you already know another programming
language.

2.2 The Python Package Manager

Pip is the python package manager. The package manager allows you install various libraries for the
Python programming language to enhance its functionality.

A package manager, whether for Python, your operating system or some other environment, is
a software tool that automates the process of installing, upgrading, configuring and removing
packages - that is, a package of software which you can use on your computer. This is opposed
to downloading, installing and maintaining software manually. Maintaining Python packages is
pretty painful. Most packages often have dependencies so these need to be installed too. Then these
packages may conflict or require particular versions which need to be resolved. Also, the system
path to these packages needs to be specified and maintained. Luckily pip handles all this for you -
so you can sit back and relax.

Try and run pip with the command $ pip. If the command is not found, you’ll need to install pip
itself - check out the system setup chapter for more information. You should also ensure that the
following packages are installed on your system. Run the following commands to install Django and
pillow (an image manipulation library for Python).

$ pip install -U django==1.9.10

$ pip install pillow

www.tangowithdjango.com

http://www.korokithakis.net/tutorials/python/
http://docs.python.org/2/tutorial/
http://www.greenteapress.com/thinkpython/
https://www.coursera.org/course/programming1
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Advanced_Packaging_Tool
https://docs.npmjs.com/cli/install
https://python-pillow.org/

Getting Ready to Tango 14

Problems Installing pillow?
When installing Pillow, you may receive an error stating that the installation failed due to
a lack of JPEG support. This error is shown as the following:

ValueError: jpeg is required unless explicitly disabled using

--disable-jpeg, aborting

If you receive this error, try installing Pillow without JPEG support enabled, with the
following command.

pip install pillow --global-option="build_ext"

--global-option="--disable-jpeg"

While you obviously will have a lack of support for handling JPEG images, Pillow should
then install without problem. Getting Pillow installed is enough for you to get started with
this tutorial. For further information, check out the Pillow documentation.

2.3 Virtual Environments

We’re almost all set to go! However, before we continue, it’s worth pointing out that while this setup
is fine to begin with, there are some drawbacks. What if you had another Python application that
requires a different version to run, or you wanted to switch to the new version of Django, but still
wanted to maintain your Django 1.9 project?

The solution to this is to use virtual environments. Virtual environments allowmultiple installations
of Python and their relevant packages to exist in harmony. This is the generally accepted approach
to configuring a Python setup nowadays.

Setting up a virtual environment is not necessarily but it is highly recommended. The virtual
environment chapter details how to setup, create and use virtual environments.

2.4 Integrated Development Environment

While not absolutely necessary, a good Python-based IDE can be very helpful to you during the
development process. Several exist, with perhaps PyCharm by JetBrains and PyDev (a plugin of the
Eclipse IDE) standing out as popular choices. The PythonWiki provides an up-to-date list of Python
IDEs.

Research which one is right for you, and be aware that some may require you to purchase a licence.
Ideally, you’ll want to select an IDE that supports integration with Django.

www.tangowithdjango.com

http://pillow.readthedocs.io/en/3.2.x/installation.html
http://simononsoftware.com/virtualenv-tutorial/
http://www.jetbrains.com/pycharm/
http://www.eclipse.org/downloads/
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Getting Ready to Tango 15

We use PyCharm as it supports virtual environments and Django integration - though you will have
to configure the IDE accordingly. We don’t cover that here - although JetBrains do provide a guide
on setting PyCharm up.

2.5 Code Repository

We should also point out that when you develop code, you should always house your code within a
version-controlled repository such as SVN or GIT. We won’t be explaining this right now, so that we
can get stuck into developing an application inDjango.We have howeverwritten a chapter providing
a crash course on GIT for your reference that you can refer to later on.We highly recommend that
you set up a Git repository for your own projects.

Exercises
To get comfortable with your environment, try out the following exercises.

• Install Python 2.7.5+/3.4+ and Pip.
• Play around with your command line interface (CLI) and create a directory called
code, which we use to create our projects in.

• Setup your Virtual Environment (optional)
• Install the Django and Pillow packages
• Setup an account on a Git Repository site like: GitHub, BitBucket, etc if you haven’t
already done so.

• Download and setup an Integrated Development Environment like PyCharm

As previously stated, we’ve made the code for the book and application available on our
GitHub repository.

• If you spot any errors or problem, please let us know by making a change request
on GitHub.

• If you have any problems with the exercises, you can check out the repository to see
how we completed them.

www.tangowithdjango.com

https://www.jetbrains.com/help/pycharm/2016.1/creating-and-running-your-first-django-project.html
https://www.jetbrains.com/help/pycharm/2016.1/creating-and-running-your-first-django-project.html
http://subversion.tigris.org/
http://git-scm.com/
https://www.jetbrains.com/pycharm/
https://github.com/leifos/tango_with_django_19/

3. Django Basics
Let’s get started with Django! In this chapter, we’ll be giving you an overview of the creation process.
You’ll be setting up a new project and a new Web application. By the end of this chapter, you will
have a simple Django powered website up and running!

3.1 Testing Your Setup

Let’s start by checking that your Python and Django installations are correct for this tutorial. To do
this, open a new terminal window and issue the following command, which tells you what Python
version you have.

$ python --version

The response should be something like 2.7.11 or 3.5.1, but any 2.7.5+ or 3.4+ versions of Python
should work fine. If you need to upgrade or install Python go to the chapter on setting up your
system.

If you are using a virtual environment, then ensure that you have activated it - if you don’t remember
how go back to our chapter on virtual environments.

After verifying your Python installation, check your Django installation. In your terminal window,
run the Python interpreter by issuing the following command.

$ python

Python 2.7.10 (default, Jul 14 2015, 19:46:27)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

At the prompt, enter the following commands:

>>> import django

>>> django.get_version()

'1.9.10'

>>> exit()

Django Basics 17

All going well you should see the correct version of Django, and then can use exit() to leave
the Python interpreter. If import django fails to import, then check that you are in your virtual
environment, and check what packages are installed with pip list at the terminal window.

If you have problems with installing the packages or have a different version installed, go to System
Setup chapter or consult the Django Documentation on Installing Django.

Prompts
In this book, there’s two things you should look out for when we include code snippets.

Snippets beginning with a dollar sign ($) indicates that the remainder of the following line
is a terminal or Command Prompt command.

Whenever you see >>>, the following is a command that should be entered into the
interactive Python interpreter. This is launched by issuing $ python. See what we did
there? You can also exit the Python interpreter by entering quit().

3.2 Creating Your Django Project

To create a new Django Project, go to your workspace directory, and issue the following command:

$ django-admin.py startproject tango_with_django_project

If you don’t have a workspace directory, then create one, so that you can house your Django projects
and other code projects within this directory. We will refer to your workspace directory in the code
as <workspace>. You will have to substitute in the path to your workspace directory, for example:
/Users/leifos/Code/ or /Users/maxwelld90/Workspace/.

Can’t find django-admin.py?
Try entering django-admin instead. Depending on your setup, some systems may not
recognise django-admin.py.

While, on Windows, you may have to use the full path to the django-admin.py script, for
example:

python c:\python27\scripts\django-admin.py

startproject tango_with_django_project

as suggested on StackOverflow.

This command will invoke the django-admin.py script, which will set up a new Django project
called tango_with_django_project for you. Typically, we append _project to the end of our Django

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/install/
http://stackoverflow.com/questions/8112630/cant-create-django-project-using-command-prompt

Django Basics 18

project directories so we know exactly what they contain - but the naming convention is entirely
up to you.

You’ll now notice within your workspace is a directory set to the name of your new project, tango_-
with_django_project. Within this newly created directory, you should see two items:

• another directory with the same name as your project, tango_with_django_project; and
• a Python script called manage.py.

For the purposes of this tutorial, we call this nested directory called tango_with_django_project

the project configuration directory. Within this directory, you will find four Python scripts. We will
discuss these scripts in detail later on, but for now you should see:

• __init__.py, a blank Python script whose presence indicates to the Python interpreter that
the directory is a Python package;

• settings.py, the place to store all of your Django project’s settings;
• urls.py, a Python script to store URL patterns for your project; and
• wsgi.py, a Python script used to help run your development server and deploy your project
to a production environment.

In the project directory, you will see there is a file called manage.py. We will be calling this script
time and time again as we develop our project. It provides you with a series of commands you can
run to maintain your Django project. For example, manage.py allows you to run the built-in Django
development server, test your application and run various database commands. We will be using the
script for virtually every Django command we want to run.

The Django Admin and Manage Scripts
For Further Information on Django admin script, see the Django documentation for more
details about the Admin and Manage scripts.

Note that if you run python manage.py help you can see the list of commands available.

You can try using the manage.py script now, by issuing the following command.

$ python manage.py runserver

Executing this command will launch Python, and instruct Django to initiate its lightweight
development server. You should see the output in your terminal window similar to the example
shown below:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/django-admin/#django-admin-py-and-manage-py

Django Basics 19

$ python manage.py runserver

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may

not work properly until they are applied.

Run 'python manage.py migrate' to apply them.

October 2, 2016 - 21:45:32

Django version 1.9.10, using settings 'tango_with_django_project.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

In the output you can see a number of things. First, there are no issues that stop the application from
running. Second, however, you will notice that a warning is raised, i.e. unapplied migrations. We
will talk about this in more detail when we setup our database, but for now we can ignore it. Third,
and most importantly, you can see that a URL has been specified: http://127.0.0.1:8000/, which
is the address of the Django development webserver.

Now open up your Web browser and enter the URL http://127.0.0.1:8000/. You should see a
webpage similar to the one shown in below.

A screenshot of the initial Django page you will see when running the development server for the first time.

www.tangowithdjango.com

http://127.0.0.1:8000/

Django Basics 20

You can stop the development server at anytime by pushing CTRL + C in your terminal or Command
Prompt window. If you wish to run the development server on a different port, or allow users from
other machines to access it, you can do so by supplying optional arguments. Consider the following
command:

$ python manage.py runserver <your_machines_ip_address>:5555

Executing this command will force the development server to respond to incoming requests on TCP
port 5555. You will need to replace <your_machines_ip_address> with your computer’s IP address
or 127.0.0.1.

Don’t know your IP Address?
If you use 0.0.0.0, Django figures out what your IP address is. Go ahead and try:

python manage.py runserver 0.0.0.0:5555

When setting ports, it is unlikely that you will be able to use TCP port 80 or 8080 as these are
traditionally reserved for HTTP traffic. Also, any port below 1024 is considered to be privileged by
your operating system.

While you won’t be using the lightweight development server to deploy your application, it’s nice to
be able to demo your application on another machine in your network. Running the server with your
machine’s IP address will enable others to enter in http://<your_machines_ip_address>:<port>/

and view your Web application. Of course, this will depend on how your network is configured.
There may be proxy servers or firewalls in the way that would need to be configured before this
would work. Check with the administrator of the network you are using if you can’t view the
development server remotely.

3.3 Creating a Django Application

A Django project is a collection of configurations and applications that together make up a given
Web application or website. One of the intended outcomes of using this approach is to promote good
software engineering practices. By developing a series of small applications, the idea is that you can
theoretically drop an existing application into a different Django project and have it working with
minimal effort.

A Django application exists to perform a particular task. You need to create specific applications that
are responsible for providing your site with particular kinds of functionality. For example, we could
imagine that a project might consist of several applications including a polling app, a registration
app, and a specific content related app. In another project, we may wish to re-use the polling and
registration apps, and so can include them in other projects. We will talk about this later. For now
we are going to create the application for the Rango app.

To do this, from within your Django project directory (e.g. <workspace>/tango_with_django_-
project), run the following command.

www.tangowithdjango.com

http://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html

Django Basics 21

$ python manage.py startapp rango

The startapp command creates a new directory within your project’s root. Unsurprisingly, this
directory is called rango - and contained within it are a number of Python scripts:

• another __init__.py, serving the exact same purpose as discussed previously;
• admin.py, where you can register your models so that you can benefit from some Django
machinery which creates an admin interface for you;

• apps.py, that provides a place for any application specific configuration;
• models.py, a place to store your application’s data models - where you specify the entities
and relationships between data;

• tests.py, where you can store a series of functions to test your application’s code;
• views.py, where you can store a series of functions that handle requests and return responses;
and

• migrations directory, which stores database specific information related to your models.

views.py and models.py are the two files you will use for any given application, and form part of
the main architectural design pattern employed by Django, i.e. the Model-View-Template pattern.
You can check out the official Django documentation to see how models, views and templates relate
to each other in more detail.

Before you can get started with creating your ownmodels and views, you must first tell your Django
project about your new application’s existence. To do this, you need to modify the settings.py file,
contained within your project’s configuration directory. Open the file and find the INSTALLED_APPS
tuple. Add the rango application to the end of the tuple, which should then look like the following
example.

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'rango',

]

Verify that Django picked up your new application by running the development server again. If you
can start the server without errors, your application was picked up and you will be ready to proceed
to the next step.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/overview/

Django Basics 22

startappMagic
When creating a new app with the python manage.py startapp command, Django may
add the new app’s name to your settings.py INSTALLED_APPS list automatically for you.
It’s nevertheless good practice to check everything is setup correctly before you proceed.

3.4 Creating a View

With our Rango application created, let’s now create a simple view. For our first view, let’s just send
some text back to the client - we won’t concern ourselves about using models or templates just yet.

In your favourite IDE, open the file views.py, located within your newly created rango application
directory. Remove the comment # Create your views here. so that you now have a blank file.

You can now add in the following code.

from django.http import HttpResponse

def index(request):

return HttpResponse("Rango says hey there partner!")

Breaking down the three lines of code, we observe the following points about creating this simple
view.

• We first import the HttpResponse object from the django.http module.
• Each view exists within the views.py file as a series of individual functions. In this instance,
we only created one view - called index.

• Each view takes in at least one argument - a HttpRequest object, which also lives in the
django.http module. Convention dictates that this is named request, but you can rename
this to whatever you want if you so desire.

• Each view must return a HttpResponse object. A simple HttpResponse object takes a string
parameter representing the content of the page we wish to send to the client requesting the
view.

With the view created, you’re only part of the way to allowing a user to access it. For a user to see
your view, you must map a Uniform Resource Locator (URL) to the view.

To create an initial mapping, open urls.py located in your project directory and add the following
lines of code to the urlpatterns:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/1.9/ref/request-response/#django.http.HttpRequest
http://en.wikipedia.org/wiki/Uniform_resource_locator

Django Basics 23

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'^admin/', admin.site.urls),

]

This maps the basic URL to the index view in the rango application. Run the development server
(e.g. python manage.py runserver) and visit http://127.0.0.1:8000 or whatever address your
development server is running on. You’ll then see the rendered output of the index view.

3.5 Mapping URLs

Rather than directly mapping URLs from the project to the application, we can make our application
more modular (and thus re-usable) by changing how we route the incoming URL to a view. To do
this, we first need to modify the project’s urls.py and have it point to the application to handle any
specific Rango application requests. We then need to specify how Rango deals with such requests.

First, open the project’s urls.py file which is located inside your project configuration directory. As
a relative path from your workspace directory, this would be the file <workspace>/tango_with_-

django_project/tango_with_django_project/urls.py. Update the urlpatterns list as shown in
the example below.

from django.conf.urls import url

from django.contrib import admin

from django.conf.urls import include

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'^rango/', include('rango.urls')),

above maps any URLs starting

with rango/ to be handled by

the rango application

url(r'^admin/', admin.site.urls),

]

You will see that the urlpatterns is a Python list, which is expected by the Django framework. The
added mapping looks for URL strings that match the patterns ˆrango/. When a match is made the
remainder of the URL string is then passed onto and handled by rango.urls through the use of the
include() function from within django.conf.urls.

www.tangowithdjango.com

Django Basics 24

Think of this as a chain that processes the URL string - as illustrated in the URL chain figure. In
this chain, the domain is stripped out and the remainder of the URL string (rango/) is passed on to
tango_with_django project, where it finds a match and strips away rango/, leaving an empty string
to be passed on to the application rango for it to handle.

Consequently, we need to create a new file called urls.py in the rango application directory, to
handle the remaining URL string (and map the empty string to the index view):

from django.conf.urls import url

from rango import views

urlpatterns = [

url(r'^$', views.index, name='index'),

]

This code imports the relevant Django machinery for URL mappings and the views module from
rango. This allows us to call the function url and point to the index view for the mapping in
urlpatterns.

When we talk about URL strings, we assume that the host portion of a given URL has already been
stripped away. The host portion of a URL denotes the host address or domain name that maps to
the webserver, such as http://127.0.0.1:8000 or http://www.tangowithdjango.com. Stripping the
host portion away means that the Django machinery needs to only handle the remainder of the URL
string. For example, given the URL http://127.0.0.1:8000/rango/about/, Django would have a
URL string of /rango/about/.

The URL mapping we have created above calls Django’s url() function, where the first parameter
is the regular expression ˆ$, which matches to an empty string because ˆ denotes starts with,
while $ denotes ends with. As there is nothing in between these characters then it only matches
an empty string. Any URL string supplied by the user that matches this pattern means that the view
views.index() would be invoked by Django. You might be thinking that matching a blank URL is
pretty pointless - what use would it serve? Remember that when the URL pattern matching takes
place, only a portion of the original URL string is considered. This is because Djangowill first process
the URL patterns in the project processing the original URL string (i.e. rango/) and strip away the
rango/ part. Django will then pass on an empty string to the Rango application to handle via the
URL patterns in rango/urls.py.

The next parameter passed to the url() function is the index view, which will handle the incoming
requests, followed by the optional parameter, name that is set to a string 'index'. By naming our
URL mappings we can employ reverse URL matching later on. That is we can reference the URL
mapping by name rather than by the URL. Later we will explain how to use this when creating
templates. But do check out the Official Django documentation on this topic for more information.

Now, restart the Django development server and visit http://127.0.0.1:8000/rango/. If all went
well, you should see the text Rango says hey there partner!. It should look just like the screenshot
shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/urls/#naming-url-patterns

Django Basics 25

An illustration of a URL, represented as a chain, showing how different parts of the URL following the domain
are the responsibility of different url.py files.

A screenshot of a Web browser displaying our first Django powered webpage. Hello, Rango!

Within each application, you will create a number of URL mappings. The initial mapping is quite
simple, but as we progress through the book we will create more sophisticated, parameterised URL
mappings.

It’s also important to have a good understanding of how URLs are handled in Django. It may seem
a bit confusing right now, but as we progress through the book, we will be creating more and more
URL mappings, so you’ll soon be a pro. To find out more about them, check out the official Django
documentation on URLs for further details and further examples.

Note on Regular Expressions
Django URL patterns use regular expressions to perform the matching. It is worthwhile
familiarising yourself on how to use regular expressions in Python. The official Python
documentation contains a useful guide on regular expressions, while regexcheatsheet.com
provides a neat summary of regular expressions.

If you are using version control, now is a good time to commit the changes you have made to your
workspace. Refer to the chapter providing a crash course onGit if you can’t remember the commands
and steps involved in doing this.

3.6 Basic Workflows

What you’ve just learnt in this chapter can be succinctly summarised into a list of actions. Here, we
provide these lists for the two distinct tasks you have performed. You can use this section for a quick
reference if you need to remind yourself about particular actions later on.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/urls/
https://docs.djangoproject.com/en/1.9/topics/http/urls/
http://en.wikipedia.org/wiki/Regular_expression
http://docs.python.org/2/howto/regex.html
http://regexcheatsheet.com/

Django Basics 26

Creating a new Django Project

1. To create the project run, python django-admin.py startproject <name>, where <name> is
the name of the project you wish to create.

Creating a new Django application

1. To create a new application, run $ python manage.py startapp <appname>, where <app-

name> is the name of the application you wish to create.
2. Tell your Django project about the new application by adding it to the INSTALLED_APPS tuple

in your project’s settings.py file.
3. In your project urls.py file, add a mapping to the application.
4. In your application’s directory, create a urls.py file to direct incoming URL strings to views.
5. In your application’s view.py, create the required views ensuring that they return a HttpRe-

sponse object.

Exercises
Now that you have got Django and your new app up and running, give the following
exercises a go to reinforce what you’ve learnt. Getting to this stage is a significant landmark
in working with Django. Creating views and mapping URLs to views is the first step
towards developing more complex and usable Web applications.

• Revise the procedure and make sure you follow how the URLs are mapped to views.
• Create a new view method called aboutwhich returns the following HttpResponse:
'Rango says here is the about page.'

• Map this view to /rango/about/. For this step, you’ll only need to edit the urls.py
of the Rango application. Remember the /rango/ part is handled by the projects
urls.py.

• Revise the HttpResponse in the index view to include a link to the about page.
• In the HttpResponse in the about view include a link back to the main page.
• Now that you have started the book, follow us on Twitter @tangowithdjango, and
let us know how you are getting on!

www.tangowithdjango.com

https://twitter.com/tangowithdjango

Django Basics 27

Hints
If you’re struggling to get the exercises done, the following hints will hopefully provide
you with some inspiration on how to progress.

• In your views.py, create a function called: def about(request):, and have the
function return a HttpResponse(), insert your HTML inside this response.

• The regular expression to match about/ is r'ˆabout/' - so in rango/urls.py add
in a new mapping to the about() view.

• Update your index() view to include a link to the about view. Keep it
simple for now - something like Rango says hey there partner!
 About.
• Also add the HTML to link back to the index page is into your response from the
about() view Index.

• If you haven’t done so already, now’s a good time to head off and complete part one
of the official Django Tutorial.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial01/

4. Templates and Media Files
In this chapter, we’ll be introducing the Django template engine, as well as showing how to serve
both static files and media files, both of which can be integrated within your app’s webpages.

4.1 Using Templates

Up until this point, we have only connected a URL mapping to a view. The Django framework,
however, is based around Model-View-Template architecture. In this section, we will go through the
mechanics of how Templates work with Views, then in the next couple of chapters we will put these
together with Models.

Why Templates? The layout from page to page within a website is often the same. Whether you
see a common header or footer on a website’s pages, the repetition of page layouts aids users
with navigation, promotes organisation of the website and reinforces a sense of continuity. Django
provides templates to make it easier for developers to achieve this design goal, as well as separating
application logic (code within your views) from presentational concerns (look and feel of your app).
In this chapter, you’ll create a basic template that will be used to create a HTML page. This template
will then be dispatched via a Django view. In the chapter concerning databases and models, we
will take this a step further by using templates in conjunction with models to dispatch dynamically
generated data.

Summary: What is a Template?
In the world of Django, think of a template as the scaffolding that is required to build
a complete HTML webpage. A template contains the static parts of a webpage (that is,
parts that never change), complete with special syntax (or template tags) which can be
overridden and replaced with dynamic content that your Django app’s views can replace
to produce a final HTML response.

Configuring the Templates Directory

To get templates up and running with your Django app, you’ll need to create a directory in which
template files are stored.

In your Django project’s directory (e.g. <workspace>/tango_with_django_project/), create a new
directory called templates. Within the new templates directory, create another directory called
rango. This means that the path <workspace>/tango_with_django_project/templates/rango/

will be the location in which we will store templates associated with our rango application.

http://www.techrepublic.com/blog/web-designer/effective-design-principles-for-web-designers-repetition/
https://docs.djangoproject.com/en/1.9/ref/templates/
https://docs.djangoproject.com/en/1.9/ref/templates/

Templates and Media Files 29

Keep your Templates Organised
It’s good practice to separate out your templates into subdirectories for each app you have.
This is whywe’ve created a rango directory within our templates directory. If you package
your app up to distribute to other developers, it’ll be much easier to know which templates
belong to which app!

To tell the Django project where templates will be stored, open your project’s settings.py file. Next,
locate the TEMPLATES data structure. By default, when you create a new Django 1.9 project, it will
look like the following.

TEMPLATES = [

{

'BACKEND': 'django.template.backends.django.DjangoTemplates',

'DIRS': [],

'APP_DIRS': True,

'OPTIONS': {

'context_processors': [

'django.template.context_processors.debug',

'django.template.context_processors.request',

'django.contrib.auth.context_processors.auth',

'django.contrib.messages.context_processors.messages',

],

},

},

]

Whatwe need to do to is tell Djangowhere our templates are stored bymodifying the DIRS list, which
is set to an empty list by default. Change the dictionary key/value pair to look like the following.

'DIRS': ['<workspace>/tango_with_django_project/templates']

Note that you are required to use absolute paths to locate the templates directory. If you are
collaborating with team members or working on different computers, then this will become a
problem. You’ll have different usernames and different drive structures, meaning the paths to the
<workspace> directory will be different. One solution would be to add the path for each different
configuration. For example:

www.tangowithdjango.com

Templates and Media Files 30

'DIRS': ['/Users/leifos/templates',

'/Users/maxwelld90/templates',

'/Users/clueless_noob/templates',]

However, there are a number of problems with this. First you have to add in the path for each setting,
each time. Second, if you are running the app on different operating systems the black slashes have
to be constructed differently.

Don’t hard code Paths!
The road to hell is paved with hard coded paths. Hard-coding paths is a software
engineering anti-pattern, and will make your project less portable - meaning that when
you run it on another computer, it probably won’t work!

Dynamic Paths

A better solution is to make use of built-in Python functions to work out the path of your templates
directory automatically. This way, an absolute path can be obtained regardless of where you place
your Django project’s code. This in turn means that your project becomes more portable.

At the top of your settings.py file, there is a variable called BASE_DIR. This variable stores the path
to the directory in which your project’s settings.pymodule is contained. This is obtained by using
the special Python __file__ attribute, which is set to the absolute path of your settings module.
The call to os.path.dirname() then provides the reference to the absolute path of the directory
containing the settings.py module. Calling os.path.dirname() again removes another layer, so
that BASE_DIR contains <workspace>/tango_with_django_project/. You can see this process in
action, if you are curious, by adding the following lines to your settings.py file.

print(__file__)

print(os.path.dirname(__file__))

print(os.path.dirname(os.path.dirname(__file__)))

Having access to the value of BASE_DIR makes it easy for you to reference other aspects of your
Django project. As such, we can now create a new variable called TEMPLATE_DIR that will reference
your new templates directory. We can make use of the os.path.join() function to join up multiple
paths, leading to a variable definition like the example below.

TEMPLATE_DIR = os.path.join(BASE_DIR, 'templates')

Here we make use of os.path.join() to mash together the BASE_DIR variable and 'templates',
which would yield <workspace>/tango_with_django_project/templates/. This means we can
then use our new TEMPLATE_DIR variable to replace the hard coded path we defined earlier in
TEMPLATES. Update the DIRS key/value pairing to look like the following.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Hard_coding
http://sourcemaking.com/antipatterns
http://sourcemaking.com/antipatterns
http://en.wikipedia.org/wiki/Software_portability
http://stackoverflow.com/a/9271479

Templates and Media Files 31

'DIRS': [TEMPLATE_DIR,]

Why TEMPLATE_DIR?
You’ve created a new variable called TEMPLATE_DIR at the top of your settings.py file
because it’s easier to access should you ever need to change it. For more complex Django
projects, the DIRS list allows you to specify more than one template directory - but for this
book, one location is sufficient to get everything working.

Concatenating Paths
When concatenating system paths together, always use os.path.join(). Using this
built-in function ensures that the correct path separators are used. On a UNIX operating
system (or derivative of), forward slashes (/) would be used to separate directories, whereas
a Windows operating system would use backward slashes (\). If you manually append
slashes to paths, you may end up with path errors when attempting to run your code on a
different operating system, thus reducing your project’s portability.

Adding a Template

With your template directory and path now set up, create a file called index.html and place it in
the templates/rango/ directory. Within this new file, add the following HTML code.

<!DOCTYPE html>

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>

hey there partner!

{{ boldmessage }}

</div>

<div>

About

</div>

</body>

</html>

www.tangowithdjango.com

Templates and Media Files 32

From this HTML code, it should be clear that a simple HTML page is going to be generated that
greets a user with a hello world message. You might also notice some non-HTML in the form of {{
boldmessage }}. This is a Django template variable. We can set values to these variables so they are
replaced with whatever we want when the template is rendered. We’ll get to that in a moment.

To use this template, we need to reconfigure the index() view that we created earlier. Instead of
dispatching a simple response, we will change the view to dispatch our template.

In rango/views.py, check to see if the following import statement exists at the top of the file. If it
is not present, add it.

from django.shortcuts import render

You can then update the index() view function as follows. Check out the inline commentary to see
what each line does.

def index(request):

Construct a dictionary to pass to the template engine as its context.

Note the key boldmessage is the same as {{ boldmessage }} in the template!

context_dict = {'boldmessage': "Crunchy, creamy, cookie, candy, cupcake!"}

Return a rendered response to send to the client.

We make use of the shortcut function to make our lives easier.

Note that the first parameter is the template we wish to use.

return render(request, 'rango/index.html', context=context_dict)

First, we construct a dictionary of key/value pairs that we want to use within the template. Then,
we call the render() helper function. This function takes as input the user’s request, the template
filename, and the context dictionary. The render() function will take this data and mash it together
with the template to produce a complete HTML page that is returned with a HttpResponse. This
response is then returned and dispatched to the user’s web browser.

What is the Template Context?
When a template file is loaded with the Django templating system, a template context is
created. In simple terms, a template context is a Python dictionary that maps template
variable names with Python variables. In the template we created above, we included a
template variable name called boldmessage. In our updated index(request) view example,
the string Crunchy, creamy, cookie, candy, cupcake! is mapped to template variable
boldmessage. The string Crunchy, creamy, cookie, candy, cupcake! therefore replaces
any instance of {{ boldmessage }} within the template.

Now that you have updated the view to employ the use of your template, start the Django
development server and visit http://127.0.0.1:8000/rango/. You should see your simple HTML
template rendered, just like the example screenshot shown below.

www.tangowithdjango.com

Templates and Media Files 33

If you don’t, read the error message presented to see what the problem is, and then double check
all the changes that you have made. One of the most common issues people have with templates is
that the path is set incorrectly in settings.py. Sometimes it’s worth adding a print statement to
settings.py to report the BASE_DIR and TEMPLATE_DIR to make sure everything is correct.

This example demonstrates how to use templates within your views. However, we have only touched
upon a fraction of the functionality provided by the Django templating engine.Wewill use templates
in more sophisticated ways as you progress through this book. In the meantime, you can find out
more about templates from the official Django documentation.

What you should see when your first template is working correctly. Note the bold text - Crunchy, creamy,

cookie, candy, cupcake! - which originates from the view, but is rendered in the template.

4.2 Serving Static Media Files

While you’ve got templates working, your Rango app is admittedly looking a bit plain right now -
there’s no styling or imagery. We can add references to other files in our HTML template such as
Cascading Style Sheets (CSS), JavaScript and images to improve the presentation. These are called
static files, because they are not generated dynamically by a Web server; they are simply sent as
is to a client’s Web browser. This section shows you how to set Django up to serve static files, and
shows you how to include an image within your simple template.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript

Templates and Media Files 34

Configuring the Static Media Directory

To start, you will need to set up a directory in which static media files are stored. In your project
directory (e.g. <workspace>/tango_with_django_project/), create a new directory called static

and a new directory called images inside static. Check that the new static directory is at the
same level as the templates directory you created earlier in this chapter.

Next, place an image inside the images directory. As shown in below, we chose a picture of the
chameleon Rango - a fitting mascot, if ever there was one.

Rango the chameleon within our static/images media directory.

Just like the templates directory we created earlier, we need to tell Django about our new static

directory. To do this, we once again need to edit our project’s settings.pymodule. Within this file,
we need to add a new variable pointing to our static directory, and a data structure that Django
can parse to work out where our new directory is.

First of all, create a variable called STATIC_DIR at the top of settings.py, preferably underneath
BASE_DIR and TEMPLATES_DIR to keep your paths all in the same place. STATIC_DIR should make use
of the same os.path.join trick - but point to static this time around, just as shown below.

STATIC_DIR = os.path.join(BASE_DIR, 'static')

This will provide an absolute path to the location <workspace>/tango_with_django_project/stat-
ic/. Once this variable has been created, we then need to create a new data structure called

www.tangowithdjango.com

http://www.imdb.com/title/tt1192628/
http://www.imdb.com/title/tt1192628/

Templates and Media Files 35

STATICFILES_DIRS. This is essentially a list of paths with which Django can expect to find static
files that can be served. By default, this list does not exist - check it doesn’t before you create it. If
you define it twice, you can start to confuse Django - and yourself.

For this book, we’re only going to be using one location to store our project’s static files - the path
defined in STATIC_DIR. As such, we can simply set up STATICFILES_DIRS with the following.

STATICFILES_DIRS = [STATIC_DIR,]

Keep settings.py Tidy!
It’s in your best interests to keep your settings.py module tidy and in good order. Don’t
just put things in random places; keep it organised. Keep your DIRS variables at the top
of the module so they are easy to find, and place STATICFILES_DIRS in the portion of the
module responsible for static media (close to the bottom). When you come back to edit the
file later, it’ll be easier for you or other collaborators to find the necessary variables.

Finally, check that the STATIC_URL variable is defined within your settings.py module. If it is not,
then define it as shown below. Note that this variable by default in Django 1.9 appears close to the
end of the module, so you may have to scroll down to find it.

STATIC_URL = '/static/'

With everything required now entered, what does it all mean? Put simply, the first two variables
STATIC_DIR and STATICFILES_DIRS refers to the locations on your computer where static files are
stored. The final variable STATIC_URL then allows us to specify the URL with which static files can
be accessed when we run our Django development server. For example, with STATIC_URL set to
/static/, we would be able to access static content at http://127.0.0.1:8000/static/. Think of
the first two variables as server-side locations, and the third variable as the location with which
clients can access static content.

Test your Configuration
As a small exercise, test to see if everything is working correctly. Try and view the
rango.jpg image in your browser when the Django development server is running. If your
STATIC_URL is set to /static/ and rango.jpg can be found at images/rango.jpg, what is
the URL you enter into your Web browser’s window?

Try to figure this out before you move on! The answer is coming up if you get stuck.

www.tangowithdjango.com

Templates and Media Files 36

Don’t Forget the Slashes!
When setting STATIC_URL, check that you end the URL you specify with a forward slash
(e.g. /static/, not /static). As per the official Django documentation, not doing so
can open you up to a world of pain. The extra slash at the end ensures that the root
of the URL (e.g. /static/) is separated from the static content you want to serve (e.g.
images/rango.jpg).

Serving Static Content
While using the Django development server to serve your static media files is fine for a
development environment, it’s highly unsuitable for a production environment. The official
Django documentation on deployment provides further information about deploying static
files in a production environment. We’ll look at this issue in more detail however when we
deploy Rango.

If you haven’t managed to figure out where the image should be accessible from, point your web
browser to http://127.0.0.1:8000/static/images/rango.jpg.

Static Media Files and Templates

Now that you have your Django project set up to handle static files, you can now make use of these
files within your templates to improve their appearance and add additional functionality.

To demonstrate how to include static files, open up the index.html templates you created earlier,
located in the <workspace>/templates/rango/ directory. Modify the HTML source code as follows.
The two lines that we add are shown with a HTML comment next to them for easy identification.

<!DOCTYPE html>

{% load staticfiles %} <!-- New line -->

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>

hey there partner!

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-STATIC_URL
https://docs.djangoproject.com/en/1.9/howto/static-files/deployment/
https://docs.djangoproject.com/en/1.9/howto/static-files/deployment/

Templates and Media Files 37

{{ boldmessage }}

</div>

<div>

About

<img src="{% static "images/rango.jpg" %}"

alt="Picture of Rango" /> <!-- New line -->

</div>

</body>

</html>

The first new line added ({% load staticfiles %}) informs Django’s template engine that we will
be using static files within the template. This then enables us to access the media in the static
directories via the use of the static template tag. This indicates to Django that we wish to show
the image located in the static media directory called images/rango.jpg. Template tags are denoted
by curly brackets (e.g. {% % }), and calling static will combine the URL specified in STATIC_URL

with images/rango.jpg to yield /static/images/rango.jpg. The HTML generated by the Django
Template Engine would be:

If for some reason the image cannot be loaded, it is always a good idea to specify an alternative text
tagline. This is what the alt attribute provides inside the img tag.

With these minor changes in place, start the Django development server once more and navigate to
http://127.0.0.1:8000/rango. If everything has been done correctly, you will see a Webpage that
looks similar to the screenshot shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/builtins/

Templates and Media Files 38

Our first Rango template, complete with a picture of Rango the chameleon.

Templates and <!DOCTYPE>

When creating the HTML templates, always ensure that the DOCTYPE declaration appears
on the first line. If you put the {% load staticfiles %} template command first, then
whitespace will be added to the rendered template before the DOCTYPE declaration. This
whitespace will lead to your HTML markup failing validation.

www.tangowithdjango.com

http://www.w3schools.com/tags/tag_doctype.asp
https://validator.w3.org/

Templates and Media Files 39

Loading other Static Files
The {% static %} template tag can be used whenever you wish to reference static
files within a template. The code example below demonstrates how you could include
JavaScript, CSS and images into your templates with correct HTML markup.

<!DOCTYPE html>

{% load staticfiles %}

<html>

<head>

<title>Rango</title>

<!-- CSS -->

<link rel="stylesheet" href="{% static "css/base.css" %}" />

<!-- JavaScript -->

<script src="{% static "js/jquery.js" %}"></script>

</head>

<body>

<!-- Image -->

</body>

</html>

Static files you reference will obviously need to be present within your static directory.
If a requested file is not present or you have referenced it incorrectly, the console output
provided by Django’s development server will show a HTTP 404 error. Try referencing a
non-existent file and see what happens. Looking at the output snippet below, notice how
the last entry’s HTTP status code is 404.

[10/Apr/2016 15:12:48] "GET /rango/ HTTP/1.1" 200 374

[10/Apr/2016 15:12:48] "GET /static/images/rango.jpg HTTP/1.1" 304 0

[10/Apr/2016 15:12:52] "GET /static/images/not-here.jpg HTTP/1.1" 404 0

For further information about including static media you can read through the official
Django documentation on working with static files in templates.

4.3 Serving Media

Static media files can be considered files that don’t change and are essential to your application.
However, often you will have to store media files which are dynamic in nature, and are loaded into

www.tangowithdjango.com

https://en.wikipedia.org/wiki/HTTP_404
https://docs.djangoproject.com/en/1.9/howto/static-files/#staticfiles-in-templates

Templates and Media Files 40

your database, by your users or administrators, and so they may change. For example when a user
uploads their profile picture, or if you have table of products where each product contains an image
of the item.

In order to serve media files successfully, we need to update Django project’s settings. This section
details what you need to add - but we won’t be fully testing it out until later where we implement
the functionality for users to upload profile pictures.

Serving Media Files
Like serving static content, Django provides the ability to serve media files in your
development environment - to make sure everything is working. The methods that Django
uses to serve this content are highly unsuitable for a production environment, so you should
be looking to host your app’s media files by some other means. The deployment chapter
will discuss this in more detail.

Modifying settings.py

First open your Django project’s settings.pymodule. In here, we’ll be adding a couple more things.
Like static files, media files are uploaded to a specified directory on your filesystem. We need to tell
Django where to store these files.

At the top of your settings.pymodule, locate your existing BASE_DIR, TEMPLATE_DIR and STATIC_-
DIR variables - they should be close to the top. Underneath, add a further variable, MEDIA_DIR.

MEDIA_DIR = os.path.join(BASE_DIR, 'media')

This line instructs Django that media files will be uploaded to your Django project’s root, plus
‘/media’ - or <workspace>/tango_with_django_project/media/. As we previously mentioned,
keeping these path variables at the top of your settings.py module makes it easy to change paths
later on if necessary.

Now find a blank spot in settings.py, and add two more variables. The variables MEDIA_ROOT and
MEDIA_URL will be picked up and used by Django to set up media file hosting.

MEDIA_ROOT = MEDIA_DIR

MEDIA_URL = '/media/'

Once again, don’t Forget the Slashes!
Like the STATIC_URL variable, ensure that MEDIA_URL ends with a forward slash (i.e.
/media/, not /media). The extra slash at the end ensures that the root of the URL (e.g.
/media/) is separated from the content uploaded by your app’s users.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/howto/static-files/#serving-files-uploaded-by-a-user-during-development

Templates and Media Files 41

The two variables tell Django where to look in your filesystem for media files (MEDIA_ROOT) that
have been uploaded/stored, and what URL to serve them from (MEDIA_URL). With the configuration
defined above, the uploaded file cat.jpgwill for example be available on your Django development
server at http://localhost:8000/media/cat.jpg.

When we come to working with templates later on in this book, it’ll be handy for us to obtain a
reference to the MEDIA_URL path when we need to reference uploaded content. Django provides a
template context processor that’ll make it easy for us to do. While we don’t strictly need this set up
now, it’s a good time to add it in.

To do this, find the TEMPLATES list in settings.py. Within that list, look for the nested context_-

processors list, and within that list, add a new processor, django.template.context_proces-
sors.media. Your context_processors list should then look similar to the example below.

'context_processors': [

'django.template.context_processors.debug',

'django.template.context_processors.request',

'django.contrib.auth.context_processors.auth',

'django.contrib.messages.context_processors.messages',

'django.template.context_processors.media'

],

Tweaking your URLs

The final step for setting up the serving of media in a development environment is to tell Django
to serve static content from MEDIA_URL. This can be achieved by opening your project’s urls.py
module, andmodifying it by appending a call to the static() function to your project’s urlpatterns
list.

urlpatterns = [

...

...

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

You’ll also need to add the following import statements at the top of the urls.py module.

from django.conf import settings

from django.conf.urls.static import static

Once this is complete, you should be able to serve content from the media directory of your project
from the /media/ URL.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/api/#django-template-context-processors-media

Templates and Media Files 42

4.4 Basic Workflow

With the chapter complete, you should now know how to setup and create templates, use templates
within your views, setup and use the Django development server to serve static media files, and
include images within your templates. We’ve covered quite a lot!

Creating a template and integrating it within a Django view is a key concept for you to understand.
It takes several steps, but will become second nature to you after a few attempts.

1. First, create the template you wish to use and save it within the templates directory you
specified in your project’s settings.py module. You may wish to use Django template
variables (e.g. {{ variable_name }}) or template tags within your template. You’ll be able
to replace these with whatever you like within the corresponding view.

2. Find or create a new view within an application’s views.py file.
3. Add your view specific logic (if you have any) to the view. For example, this may involve

extracting data from a database and storing it within a list.
4. Within the view, construct a dictionary object which you can pass to the template engine as

part of the template’s context .
5. Make use of the render() helper function to generate the rendered response. Ensure you

reference the request, then the template file, followed by the context dictionary.
6. If you haven’t already done so, map the view to a URL by modifying your project’s urls.py

file and the application specific urls.py file if you have one.

The steps involved for getting a static media file onto one of your pages are part of another important
process that you should be familiar with. Check out the steps below on how to do this.

1. Take the static media file you wish to use and place it within your project’s static directory.
This is the directory you specify in your project’s STATICFILES_DIRS list within settings.py.

2. Add a reference to the static media file to a template. For example, an image would be inserted
into an HTML page through the use of the tag.

3. Remember to use the {% load staticfiles %} and {% static "<filename>" %} commands
within the template to access the static files. Replace <filename>with the path to the image or
resource you wish to reference.Whenever you wish to refer to a static file, use the static
template tag!

The steps for serving media files are similar to those for serving static media.

1. Place a file within your project’s media directory. The media directory is specified by your
project’s MEDIA_ROOT variable.

2. Link to the media file in a template through the use of the {{ MEDIA_URL }} context variable.
For example, referencing an uploaded image cat.jpg would have an tag like <img

src="{{ MEDIA_URL}}cat.jpg">.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/builtins/

Templates and Media Files 43

Exercises
Give the following exercises a go to reinforce what you’ve learnt from this chapter.

• Convert the about page to use a template aswell, using a template called about.html.
• Within the new about.html template, add a picture stored within your project’s
static files.

• On the about page, include a line that says, This tutorial has been put together

by <your-name>.
• In your Django project directory, create a new directory called media, download a
picture of a cat and save it the media directory in a file called, cat.jpg.

• In your about page, add in the tag to display the picture of the cat, to ensure
that your media is being served correctly.

www.tangowithdjango.com

5. Models and Databases
When you think of databases, you will usually think of the Structured Query Language (SQL), the
common means with which we query the database for the data we require. With Django, querying
an underlying database - which can store all sorts of data, such as your website’s user details - is
taken care of by the Object Relational Mapper (ORM). In essence, data stored within a database
table can be encapsulated within a model. A model is a Python object that describes your database
table’s data. Instead of directly working on the database via SQL, you only need to manipulate the
corresponding Python model object.

This chapter walks you through the basics of data management with Django and its ORM. You’ll
find it’s incredibly easy to add, modify and delete data within your app’s underlying database, and
how straightforward it is to get data from the database to the Web browsers of your users.

5.1 Rango’s Requirements

Before we get started, let’s go over the data requirements for the Rango app that we are developing.
Full requirements for the application are provided in detail earlier on, but to refresh your memory,
let’s quickly summarise our client’s requirements.

• Rango is essentially a web page directory - a site containing links to other websites.
• There are a number of different webpage categories with each category housing a number of
links. We assumed in the overview chapter that this is a one-to-many relationship. Check out
the Entity Relationship diagram below.

• A category has a name, a number of visits, and a number of likes.
• A page refers to a category, has a title, URL and a number of views.

The Entity Relationship Diagram of Rango’s two main entities.

https://en.wikipedia.org/wiki/Object-relational_mapping

Models and Databases 45

5.2 Telling Django about Your Database

Before we can create any models, we need to set up our database with Django. In Django 1.9, a
DATABASES variable is automatically created in your settings.py module when you set up a new
project. It’ll look similar to the following example.

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

}

}

We can pretty much leave this as is for our Rango app. You can see a default database that is
powered by a lightweight database engine, SQLite (see the ENGINE option). The NAME entry for this
database is the path to the database file, which is by default db.sqlite3 in the root of your Django
project.

Git Top Tip
If you are using Git, you might be tempted to add and commit the database file. This is not
a good idea because if you are working on your app with other people, they are likely to
change the database and this will cause endless conflicts.

Instead, add db.sqlite3 to your .gitignore file so that it won’t be added when you git

commit and git push. You can also do this for other files like *.pyc and machine specific
files.

Using other Database Engines
TheDjango database framework has been created to cater for a variety of different database
backends, such as PostgresSQL, MySQL and Microsoft’s SQL Server. For other database
engines, other keys like USER, PASSWORD, HOST and PORT exist for you to configure the
database with Django.

While we don’t cover how to use other database engines in this book, there are guides
online which show you how to do this. A good starting point is the official Django
documentation.

Note that SQLite is sufficient for demonstrating the functionality of the Django ORM.
When you find your app has become viral and has accumulated thousands of users, you
may want to consider switching the database backend to something more robust.

www.tangowithdjango.com

https://www.sqlite.org/
http://www.postgresql.org/
https://www.mysql.com/
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://docs.djangoproject.com/en/1.9/ref/databases/#storage-engines
https://docs.djangoproject.com/en/1.9/ref/databases/#storage-engines
http://www.sqlite.org/whentouse.html

Models and Databases 46

5.3 Creating Models

With your database configured in settings.py, let’s create the two initial data models for the Rango
application. Models for a Django app are stored in the respective models.pymodule. This means that
for Rango, models are stored within rango/models.py.

For the models themselves, we will create two classes - one class representing each model. Both
must inherit from the Model base class, django.db.models.Model. The two Python classes will be
the definitions for models representing categories and pages. Define the Category and Page model
as follows.

class Category(models.Model):

name = models.CharField(max_length=128, unique=True)

def __str__(self): # For Python 2, use __unicode__ too

return self.name

class Page(models.Model):

category = models.ForeignKey(Category)

title = models.CharField(max_length=128)

url = models.URLField()

views = models.IntegerField(default=0)

def __str__(self): # For Python 2, use __unicode__ too

return self.title

Check import Statements
At the top of the models.py module, you should see from django.db import models. If
you don’t see it, add it in.

__str__() or __unicode__()?
The __str__() and __unicode__() methods in Python generate a string representation of
the class (similar to the toString()method in Java). In Python 2.x, strings are represented
in ASCII format in the __str__() method. If you want Unicode support, then you need to
also implement the __unicode__() method.

In Python 3.x, strings are Unicode by default - so you only need to implement the __str__()
method.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://docs.python.org/2/howto/unicode.html

Models and Databases 47

When you define a model, you need to specify the list of fields and their associated types, along
with any required or optional parameters. By default, all models have an auto-increment integer
field called id which is automatically assigned and acts a primary key.

Django provides a comprehensive series of built-in field types. Some of the most commonly used
are detailed below.

• CharField, a field for storing character data (e.g. strings). Specify max_length to provide a
maximum number o characters the field can store.

• URLField, much like a CharField, but designed for storing resource URLs. You may also
specify a max_length parameter.

• IntegerField, which stores integers.
• DateField, which stores a Python datetime.date object.

Other Field Types
Check out the Django documentation on model fields for a full listing of the Django field
types you can use, along with details on the required and optional parameters that each
has.

For each field, you can specify the unique attribute. If set to True, the given field’s value must
be unique throughout the underlying database table that is mapped to the associated model. For
example, take a look at our Category model defined above. The field name has been set to unique,
meaning that every category name must be unique. This means that you can use the field like a
primary key.

You can also specify additional attributes for each field, such as stating a default value with the
syntax default='value', and whether the value for a field can be blank (or NULL) (null=True) or
not (null=False).

Django provides three types of fields for forging relationships between models in your database.
These are:

• ForeignKey, a field type that allows us to create a one-to-many relationship;
• OneToOneField, a field type that allows us to define a strict one-to-one relationship; and
• ManyToManyField, a field type which allows us to define a many-to-many relationship.

From our model examples above, the field category in model Page is of type ForeignKey. This
allows us to create a one-to-many relationship with model/table Category, which is specified as an
argument to the field’s constructor.

Finally, it is good practice to implement the __str__() and/or __unicode__() methods. Without
this method implemented when you go to print the object, it will show as <Category: Category

object>. This isn’t very useful when debugging or accessing the object - instead the code above will
print, for example, <Category: Python> for the Python category. It is also helpful when we go to
use the Admin Interface because Django will display the string representation of the object.

www.tangowithdjango.com

https://docs.djangoproject.com/es/1.9/ref/models/fields/#model-field-types
https://docs.djangoproject.com/es/1.9/ref/models/fields/#model-field-types
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/One-to-many_(data_model)
https://en.wikipedia.org/wiki/One-to-one_(data_model)
https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Models and Databases 48

5.4 Creating and Migrating the Database

With our models defined in models.py, we can now let Django work its magic and create the tables
in the underlying database. Django provides what is called a migration tool to help us set up and
update the database to reflect any changes to your models. For example, if you were to add a new
field then you can use the migration tools to update the database.

Setting up

First of all, the database must be initialised. This means creating the database and all the associated
tables so that data can then be stored within it. To do this, you must open a terminal or command
prompt, and navigate to your project’s root directory - where manage.py is stored. Run the following
command.

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, contenttypes, auth, sessions

Running migrations:

Rendering model states... DONE

Applying contenttypes.0001_initial... OK

Applying auth.0001_initial... OK

Applying admin.0001_initial... OK

Applying admin.0002_logentry_remove_auto_add... OK

Applying contenttypes.0002_remove_content_type_name... OK

Applying auth.0002_alter_permission_name_max_length... OK

Applying auth.0003_alter_user_email_max_length... OK

Applying auth.0004_alter_user_username_opts... OK

Applying auth.0005_alter_user_last_login_null... OK

Applying auth.0006_require_contenttypes_0002... OK

Applying auth.0007_alter_validators_add_error_messages... OK

Applying sessions.0001_initial... OK

All apps that are installed in your Django project (check INSTALLED_APPS in settings.py) will
update their database representations with this command. After this command is issued, you should
then see a db.sqlite3 file in your Django project’s root.

Next, create a superuser to manage the database. Run the following command.

$ python manage.py createsuperuser

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Data_migration

Models and Databases 49

The superuser accountwill be used to access the Django admin interface, used later on in this chapter.
Enter a username for the account, e-mail address and provide a password when prompted. Once
completed, the script should finish successfully. Make sure you take a note of the username and
password for your superuser account.

Creating and Updating Models/Tables

Whenever you make changes to your app’s models, you need to register the changes via the
makemigrations command in manage.py. Specifying the rango app as our target, we then issue
the following command from our Django project’s root directory.

$ python manage.py makemigrations rango

Migrations for 'rango':

0001_initial.py:

- Create model Category

- Create model Page

Upon the completion of this command, check the rango/migrations directory to see that a Python
script has been created. It’s called 0001_initial.py, which contains all the necessary details to
create your database schema for that particular migration.

Checking the Underlying SQL
If you want to check out the underlying SQL that the Django ORM issues to the database
engine for a given migration, you can issue the following command.

$ python manage.py sqlmigrate rango 0001

In this example, rango is the name of your app, and 0001 is the migration you wish to view
the SQL code for. Doing this allows you to get a better understanding of what exactly is
going on at the database layer, such as what tables are created. You may find for complex
database schemas including a many-to-many relationship that additional tables are created
for you.

After you have created migrations for your app, you need to commit them to the database. Do so
by once again issuing the migrate command.

www.tangowithdjango.com

Models and Databases 50

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, rango, contenttypes, auth, sessions

Running migrations:

Rendering model states... DONE

Applying rango.0001_initial... OK

This output confirms that the database tables have been created in your database, and you are good
to go.

However, you may have noticed that our Category model is currently lacking some fields that
were specified in Rango’s requirements. Don’t worry about this, as these will be added in later,
allowing you to go through the migration process again.

5.5 Django Models and the Shell

Before we turn our attention to demonstrating the Django admin interface, it’s worth noting that you
can interact with Django models directly from the Django shell - a very useful tool for debugging
purposes. We’ll demonstrate how to create a Category instance using this method.

To access the shell, we need to call manage.py from within your Django project’s root directory once
more. Run the following command.

$ python manage.py shell

This will start an instance of the Python interpreter and load in your project’s settings for you.
You can then interact with the models, with the following terminal session demonstrating this
functionality. Check out the inline commentary that we added to see what each command achieves.

Import the Category model from the Rango application

>>> from rango.models import Category

Show all the current categories

>>> print(Category.objects.all())

[] # Returns an empty list (no categories have been defined!)

Create a new category object, and save it to the database.

>>> c = Category(name="Test")

>>> c.save()

Now list all the category objects stored once more.

>>> print(Category.objects.all())

[<Category: test>] # We now have a category called 'Test' saved in the database!

www.tangowithdjango.com

Models and Databases 51

Quit the Django shell.

>>> quit()

In the example, we first import the model that we want to manipulate. We then print out all the
existing categories. As our underlying Category table is empty, an empty list is returned. Then we
create and save a Category, before printing out all the categories again. This second print then
shows the new Category just added. Note the name, Test appears in the second print - this is your
__str__() or __unicode__() method at work!

Complete the Official Tutorial
The example above is only a very basic taster on database related activities you can perform
in the Django shell. If you have not done so already, it’s now a good time to complete part
two of the official Django Tutorial to learn more about interacting with models. Also check
out the official Django documentation on the list of available commands for working with
models.

5.6 Configuring the Admin Interface

One of the eye-catching features of Django is the built-in, Web-based administrative interface that
allows you to browse and edit data represented as model instances (from the corresponding database
tables).

Setting everything up is relatively straightforward. In your project’s settings.py module, you will
notice that one of the preinstalled apps (within the INSTALLED_APPS list) is django.contrib.admin.
Furthermore, there is a urlpattern that matches admin/ within your project’s urls.py module.

By default, things are pretty much ready to go. Start the Django development server in the usual
way with the following command.

$ python manage.py runserver

Navigate yourWeb browser to http://127.0.0.1:8000/admin/. You are then presentedwith a login
prompt. Login using the credentials you created previously with the createsuperuser command.
You are then presented with an interface looking similar to the one shown below.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/ref/django-admin/#available-commands

Models and Databases 52

The Django admin interface, sans Rango models.

While this looks good, we are missing the Category and Pagemodels that were defined for the Rango
app. To include these models, we need to give Django some help.

To do this, open the file rango/admin.py. With an include statement already present, modify the
module so that you register each class you want to include. The example below registers both the
Category and Page class to the admin interface.

from django.contrib import admin

from rango.models import Category, Page

admin.site.register(Category)

admin.site.register(Page)

Adding further classes which may be created in the future is as simple as adding another call to the
admin.site.register() method.

With these changes saved, restart the Django development server and revisit the admin interface at
http://127.0.0.1:8000/admin/. You will now see the Category and Pagemodels, as shown below.

www.tangowithdjango.com

Models and Databases 53

The Django admin interface, complete with Rango models.

Try clicking the Categorys link within the Rango section. From here, you should see the test

category that we created earlier via the Django shell.

Experiment with the Admin Interface
You’ll be using the admin interface quite a bit to verify data is stored correctly as you
develop the Rango app. Experiment with it, and see how it all works. The interface is self-
explanatory and straightforward to understand.

Delete the test category that was previously created. We’ll be populating the database
shortly with more example data.

User Management
The Django admin interface is your port of call for user management, through the
Authentication and Authorisation section. Here, you can create, modify and delete user
accounts, and varying privilege levels.

www.tangowithdjango.com

Models and Databases 54

Plural vs. Singular Spellings
Note the typo within the admin interface (Categorys, not Categories). This typo can
be fixed by adding a nested Meta class into your model definitions with the verbose_-

name_plural attribute. Check out a modified version of the Category model below for an
example, and Django’s official documentation on models for more information about what
can be stored within the Meta class.

class Category(models.Model):

name = models.CharField(max_length=128, unique=True)

class Meta:

verbose_name_plural = 'Categories'

def __str__(self):

return self.name

Expanding admin.py

It should be noted that the example admin.py module for your Rango app is the most
simple, functional example available. However you can customise the Admin interface in
a number of ways. Check out the official Django documentation on the admin interface
for more information if you’re interested.

5.7 Creating a Population Script

Entering test data into your database tends to be a hassle. Many developers will add in some bogus
test data by randomly hitting keys, like wTFzmN00bz7. Rather than do this, it is better to write a script
to automatically populate the database with realistic and credible data. This is because when you go
to demo or test your app, you’ll see some good examples in the database. Also, if you are deploying
the app or sharing it with collaborators, then you/they won’t have to go through the process of
putting in sample data. It’s therefore good practice to create what we call a population script.

To create a population script for Rango, start by creating a new Python module within your Django
project’s root directory (e.g. <workspace>/tango_with_django_project/). Create the populate_-

rango.py file and add the following code.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/db/models/#meta-options
https://docs.djangoproject.com/en/1.9/ref/contrib/admin/

Models and Databases 55

1 import os

2 os.environ.setdefault('DJANGO_SETTINGS_MODULE',

3 'tango_with_django_project.settings')

4

5 import django

6 django.setup()

7 from rango.models import Category, Page

8

9 def populate():

10 # First, we will create lists of dictionaries containing the pages

11 # we want to add into each category.

12 # Then we will create a dictionary of dictionaries for our categories.

13 # This might seem a little bit confusing, but it allows us to iterate

14 # through each data structure, and add the data to our models.

15

16 python_pages = [

17 {"title": "Official Python Tutorial",

18 "url":"http://docs.python.org/2/tutorial/"},

19 {"title":"How to Think like a Computer Scientist",

20 "url":"http://www.greenteapress.com/thinkpython/"},

21 {"title":"Learn Python in 10 Minutes",

22 "url":"http://www.korokithakis.net/tutorials/python/"}]

23

24 django_pages = [

25 {"title":"Official Django Tutorial",

26 "url":"https://docs.djangoproject.com/en/1.9/intro/tutorial01/"},

27 {"title":"Django Rocks",

28 "url":"http://www.djangorocks.com/"},

29 {"title":"How to Tango with Django",

30 "url":"http://www.tangowithdjango.com/"}]

31

32 other_pages = [

33 {"title":"Bottle",

34 "url":"http://bottlepy.org/docs/dev/"},

35 {"title":"Flask",

36 "url":"http://flask.pocoo.org"}]

37

38 cats = {"Python": {"pages": python_pages},

39 "Django": {"pages": django_pages},

40 "Other Frameworks": {"pages": other_pages} }

41

42 # If you want to add more catergories or pages,

www.tangowithdjango.com

Models and Databases 56

43 # add them to the dictionaries above.

44

45 # The code below goes through the cats dictionary, then adds each category,

46 # and then adds all the associated pages for that category.

47 # if you are using Python 2.x then use cats.iteritems() see

48 # http://docs.quantifiedcode.com/python-anti-patterns/readability/

49 # for more information about how to iterate over a dictionary properly.

50

51 for cat, cat_data in cats.items():

52 c = add_cat(cat)

53 for p in cat_data["pages"]:

54 add_page(c, p["title"], p["url"])

55

56 # Print out the categories we have added.

57 for c in Category.objects.all():

58 for p in Page.objects.filter(category=c):

59 print("- {0} - {1}".format(str(c), str(p)))

60

61 def add_page(cat, title, url, views=0):

62 p = Page.objects.get_or_create(category=cat, title=title)[0]

63 p.url=url

64 p.views=views

65 p.save()

66 return p

67

68 def add_cat(name):

69 c = Category.objects.get_or_create(name=name)[0]

70 c.save()

71 return c

72

73 # Start execution here!

74 if __name__ == '__main__':

75 print("Starting Rango population script...")

76 populate()

Understand this Code!
To reiterate, don’t simply copy, paste and leave. Add the code to your newmodule, and then
step through line by line to work out what is going on. It’ll help with your understanding.

We’ve explanations below - hopefully you’ll learn something new!

Further note that when you see line numbers along side the code, it indicates that we have
listed the entire file, rather than code fragments.

www.tangowithdjango.com

Models and Databases 57

While this looks like a lot of code, what is going on is essentially a series of function calls to two small
functions, add_page() and add_cat() defined towards the end of the module. Reading through the
code, we find that execution starts at the bottom of the module - look at lines 75 and 76. This is
because above this point, we define functions; these are not executed unless we call them. When the
interpreter hits if __name__ == '__main__', we call the populate() function.

What does __name__ == '__main__' Represent?
The __name__ == '__main__' trick is a useful one that allows a Python module to act as
either a reusable module or a standalone Python script. Consider a reusable module as
one that can be imported into other modules (e.g. through an import statement), while
a standalone Python script would be executed from a terminal/Command Prompt by
entering python module.py.

Code within a conditional if __name__ == '__main__' statement will therefore only be
executed when the module is run as a standalone Python script. Importing the module will
not run this code; any classes or functions will however be fully accessible to you.

Importing Models
When importing Django models, make sure you have imported your project’s settings
by importing django and setting the environment variable DJANGO_SETTINGS_MODULE

to be your project’s setting file, as demonstrated in lines 1 to 6 above. You then call
django.setup() to import your Django project’s settings.

If you don’t perform this crucial step, youâ€™ll get an exception when attempting to
import your models. This is because the necessary Django infrastructure has not yet
been initialised. This is why we import Category and Page after the settings have been
loaded on line 8.

The for loop occupying lines 51-54 is responsible for the calling the add_cat() and add_page()

functions repeatedly. These functions are in turn responsible for the creation of new categories and
pages. populate() keeps tabs on categories that are created. As an example, a reference to a new
category is stored in local variable c - check line 52 above. This is stored because a Page requires
a Category reference. After add_cat() and add_page() are called in populate(), the function
concludes by looping through all new Category and associated Page objects, displaying their names
on the terminal.

www.tangowithdjango.com

http://stackoverflow.com/a/419185

Models and Databases 58

Creating Model Instances
Wemake use of the convenience get_or_create()method for creating model instances in
the population script above. As we don’t want to create duplicates of the same entry, we
can use get_or_create() to check if the entry exists in the database for us. If it doesn’t
exist, the method creates it. If it does, then a reference to the specific model instance is
returned.

This helper method can remove a lot of repetitive code for us. Rather than doing this
laborious check ourselves, we can make use of code that does exactly this for us.

The get_or_create() method returns a tuple of (object, created). The first element
object is a reference to the model instance that the get_or_create() method creates if
the database entry was not found. The entry is created using the parameters you pass to
the method - just like category, title, url and views in the example above. If the entry
already exists in the database, the method simply returns the model instance corresponding
to the entry. created is a boolean value; True is returned if get_or_create() had to create
a model instance.

This explanation therefore means that the [0] at the end of our call to the get_or_create()
returns the object reference only. Like most other programming language data structures,
Python tuples use zero-based numbering.

You can check out the official Django documentation for more information on the handy
get_or_create() method.

When saved, you can then run your new populations script by changing the present working
directory in a terminal to the Django project’s root. It’s then a simple case of executing the command
$ python populate_rango.py. You should then see output similar to that shown below.

$ python populate_rango.py

Starting Rango population script...

- Python - Official Python Tutorial

- Python - How to Think like a Computer Scientist

- Python - Learn Python in 10 Minutes

- Django - Official Django Tutorial

- Django - Django Rocks

- Django - How to Tango with Django

- Other Frameworks - Bottle

- Other Frameworks - Flask

Next, verify that the population script actually populated the database. Restart the Django develop-
ment server, navigate to the admin interface (at http://127.0.0.1:8000/admin/) and check that
you have some new categories and pages. Do you see all the pages if you click Pages, like in the
figure shown below?

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Zero-based_numbering
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#get-or-create

Models and Databases 59

The Django admin interface, showing the Page model populated with the new population script. Success!

While creating a population script may take time, you will save yourself time in the long run. When
deploying your app elsewhere, running the population script after setting everything up means you
can start demonstrating your app straight away. You’ll also find it very handy when it comes to unit
testing your code.

5.8 Workflow: Model Setup

Now that we’ve covered the core principles of dealing with Django’s ORM, now is a good time to
summarise the processes involved in setting everything up. We’ve split the core tasks into separate
sections for you. Check this section out when you need to quickly refresh your mind of the different
steps.

Setting up your Database

With a new Django project, you should first tell Django about the database you intend to use (i.e.
configure DATABASES in settings.py). You can also register any models in the admin.py module of
your app to make them accessible via the admin interface.

www.tangowithdjango.com

Models and Databases 60

Adding a Model

The workflow for adding models can be broken down into five steps.

1. First, create your new model(s) in your Django application’s models.py file.
2. Update admin.py to include and register your new model(s).
3. Perform the migration $ python manage.py makemigrations <app_name>.
4. Apply the changes $ python manage.py migrate. This will create the necessary infrastruc-

ture within the database for your new model(s).
5. Create/edit your population script for your new model(s).

Invariably, there will be times when you will have to delete your database. When this happens, run
the following commands from the manage.py module.

1. migrate your database - this will set everything up in the new database. Ensure that your app
is listed in the migrations that are committed. If it is not, run the makemigrations <app_name>

command, where <app_name> is the name of your app.
2. Create a new administrative account with the createsuperuser command.

Exercises
Now that you’ve completed this chapter, try out these exercises to reinforce and practice
what you have learnt. Once again, note that the following chapters will have expected
you to have completed these exercises!

• Update the Category model to include the additional attributes views and likes

where the default values for each are both zero (0).
• Make the migrations for your app and then migrate your database to commit the
changes.

• Update your population script so that the Python category has 128 views and 64

likes, the Django category has 64 views and 32 likes, and the Other Frameworks

category has 32 views and 16 likes.
• Delete and recreate your database, populating it with your updated population
script.

• Complete parts two and seven of the official Django tutorial. These sections will
reinforce what you’ve learnt on handling databases in Django, and show you
additional techniques to customising the Django admin interface.

• Customise the admin interface. Change it in such a way so that when you view the
Page model, the table displays the category, the name of the page and the url - just
like in the screenshot shown below. You will need to complete the previous exercises
or at least go through the official Django Tutorial to complete this exercise.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial02/
https://docs.djangoproject.com/en/1.9/intro/tutorial07/

Models and Databases 61

The updated admin interface Page view, complete with columns for category and URL.

Exercise Hints
If you require some help or inspiration to complete these exercises done, here are some
hints.

• Modify the Category model by adding in the fields, view and likes as
IntegerFields.

• Modify the add_cat function in the populate.py script, to take the views and likes.
Once you get the Category c, then you can update the number of views with
c.views, and similarly with likes. Don’t forget to save() the instance!

• To customise the admin interface, you will need to edit rango/admin.py and create
a PageAdmin class that inherits from admin.ModelAdmin.

• Within your new PageAdmin class, add list_display = ('title', 'category',

'url').
• Finally, register the PageAdmin class withDjango’s admin interface. You shouldmod-
ify the line admin.site.register(Page). Change it to admin.site.register(Page,
PageAdmin) in Rango’s admin.py file.

www.tangowithdjango.com

Models and Databases 62

Tests
We have written a few tests to check if you have completed the exercises. To check your
work so far, download the tests.py script from our GitHub repository, and save it within
your rango app directory.

To run the tests, issue the following command in the terminal or Command Prompt.

$ python manage.py test rango

If you are interested in learning about automated testing, now is a good time to check out
the chapter on testing. The chapter runs through some of the basics on how you can write
tests to automatically check the integrity of your code.

www.tangowithdjango.com

https://github.com/leifos/tango_with_django_19/blob/master/code/tango_with_django_project/rango/tests.py
https://github.com/leifos/tango_with_django_19/

6. Models, Templates and Views
Now that we have the models set up and populated the database with some sample data, we can
now start connecting the models, views and templates to serve up dynamic content. In this chapter,
we will go through the process of showing categories on the main page, and then create dedicated
category pages which will show the associated list of links.

6.1 Workflow: Data Driven Page

To do this there are five main steps that you must undertake to create a data driven webpage in
Django.

1. In views.py file import the models you wish to use.
2. In the view function, query the model to get the data you want to present.
3. Then pass the results from your model into the template’s context.
4. Create/modify the template so that it displays the data from the context.
5. If you have not done so already, map a URL to your view.

These steps highlight how we need to work within Django’s framework to bind models, views and
templates together.

6.2 Showing Categories on Rango’s Homepage

One of the requirements regarding the main page was to show the top five rango’ed categories. To
fulfil this requirement, we will go through each of the above steps.

Importing Required Models

First, we need to complete step one. Open rango/views.py and at the top of the file, after the other
imports, import the Category model from Rango’s models.py file.

Import the Category model

from rango.models import Category

Modifying the Index View

Here we will complete step two and step three, where we need to modify the view index() function.
Remember that the index() function is responsible for the main page view. Modify index() as
follows:

Models, Templates and Views 64

def index(request):

Query the database for a list of ALL categories currently stored.

Order the categories by no. likes in descending order.

Retrieve the top 5 only - or all if less than 5.

Place the list in our context_dict dictionary

that will be passed to the template engine.

category_list = Category.objects.order_by('-likes')[:5]

context_dict = {'categories': category_list}

Render the response and send it back!

return render(request, 'rango/index.html', context_dict)

Here, the expression Category.objects.order_by('-likes')[:5] queries the Category model to
retrieve the top five categories. You can see that it uses the order_by()method to sort by the number
of likes in descending order. The - in -likes denotes that we would like them in descending order
(if we removed the - then the results would be returned in ascending order). Since a list of Category
objects will be returned, we used Python’s list operators to take the first five objects from the list
([:5]) to return a subset of Category objects.

With the query complete, we passed a reference to the list (stored as variable category_list) to
the dictionary, context_dict. This dictionary is then passed as part of the context for the template
engine in the render() call.

Warning
For this to work, you will have had to complete the exercises in the previous chapter where
you need to add the field likes to the Category model.

Modifying the Index Template

With the view updated, we can complete the fourth step and update the template rango/index.html,
located within your project’s templates directory. Change the HTML so that it looks like the
example shown below.

www.tangowithdjango.com

Models, Templates and Views 65

<!DOCTYPE html>

{% load staticfiles %}

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>hey there partner!</div>

<div>

{% if categories %}

{% for category in categories %}

{{ category.name }}

{% endfor %}

{% else %}

There are no categories present.

{% endif %}

</div>

<div>

About Rango

</div>

</body>

</html>

Here, we make use of Django’s template language to present the data using if and for control
statements. Within the <body> of the page, we test to see if categories - the name of the context
variable containing our list - actually contains any categories ({% if categories %}).

If so, we proceed to construct an unordered HTML list (within the tags). The for loop ({% for

category in categories %}) then iterates through the list of results, and outputs each category’s
name ({{ category.name }}) within a pair of tags to indicate a list element.

If no categories exist, a message is displayed instead indicating that no categories are present.

As the example shows in Django’s template language, all commands are enclosed within the tags {%
and %}, while variables are referenced within {{ and }} brackets.

If you now visit Rango’s homepage at <http://127.0.0.1:8000/rango/>, you should see a list of
categories underneath the page title just like in the figure below.

www.tangowithdjango.com

Models, Templates and Views 66

The Rango homepage - now dynamically generated - shows a list of categories.

6.3 Creating a Details Page

According to the specifications for Rango, we also need to show a list of pages that are associated
with each category. We have a number of challenges here to overcome. A new viewmust be created,
which should be parameterised. We also need to create URL patterns and URL strings that encode
category names.

URL Design and Mapping

Let’s start by considering the URL problem. One way we could handle this problem is to use the
unique ID for each category within the URL. For example, we could create URLs like /rango/cate-
gory/1/ or /rango/category/2/, where the numbers correspond to the categories with unique IDs
1 and 2 respectively. However, it is not possible to infer what the category is about just from the ID.

Instead, we could use the category name as part of the URL. For example, we can imagine that the
URL /rango/category/python/ would lead us to a list of pages related to Python. This is a simple,
readable and meaningful URL. If we go with this approach, we’ll also have to handle categories that
have multiple words, like ‘Other Frameworks’, etc.

Clean your URLs
Designing clean and readable URLs is an important aspect of web design. See Wikipedia’s
article on Clean URLs for more details.

To handle this problem we are going to make use of the slugify function provided by Django.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Clean_URL
http://en.wikipedia.org/wiki/Clean_URL

Models, Templates and Views 67

Update Category Table with a Slug Field

To make readable URLs, we need to include a slug field in the Category model. First we need to
import the function slugify from Django that will replace whitespace with hyphens - for example,
"how do i create a slug in django" turns into "how-do-i-create-a-slug-in-django".

Unsafe URLs
While you can use spaces in URLs, it is considered to be unsafe to use them. Check out the
Internet Engineering Task Force Memo on URLs to read more.

Next we need to override the save()method of the Categorymodel, which we will call the slugify
method and update the slug field with it. Note that every time the category name changes, the slug
will also change. Update your model, as shown below, and add in the import.

from django.template.defaultfilters import slugify

...

class Category(models.Model):

name = models.CharField(max_length=128, unique=True)

views = models.IntegerField(default=0)

likes = models.IntegerField(default=0)

slug = models.SlugField()

def save(self, *args, **kwargs):

self.slug = slugify(self.name)

super(Category, self).save(*args, **kwargs)

class Meta:

verbose_name_plural = 'categories'

def __str__(self):

return self.name

Now that the model has been updated, the changes must now be propagated to the database.
However, since data already exists within the database, we need to consider the implications of
the change. Essentially, for all the existing category names, we want to turn them into slugs (which
is performed when the record is initially saved). When we update the models via the migration tool,
it will add the slug field and provide the option of populating the field with a default value. Of
course, we want a specific value for each entry - so we will first need to perform the migration,
and then re-run the population script. This is because the population script will explicitly call the
save method on each entry, triggering the ‘save’ as implemented above, and thus update the slug
accordingly for each entry.

www.tangowithdjango.com

http://www.ietf.org/rfc/rfc1738.txt

Models, Templates and Views 68

To perform the migration, issue the following commands (as detailed in the Models and Databases
Workflow).

$ python manage.py makemigrations rango

$ python manage.py migrate

Since we did not provide a default value for the slug and we already have existing data in the model,
the migrate command will give you two options. Select the option to provide a default, and enter
''. Then re-run the population script, which will update the slug fields.

$ python populate_rango.py

Now run the development server (python manage.py runserver), and inspect the data in themodels
via the admin interface (http://127.0.0.1:8000/admin/).

If you go to add in a new category via the admin interface you may encounter a problem, or two!

1. Let’s say we added in the category, Python User Groups. If you do so, and try to save the
record Django will not let you save it unless you also fill in the slug field too. While we
could type in python-user-groups this is error prone. It would be better to have the slug
automatically generated.

2. The next problem arises if we have one category called Django and one called django. Since
the slugify() makes the slugs lower case it will not be possible to identify which category
corresponds to the django slug.

To solve the first problem, we can either update our model so that the slug field allows blank entries,
i.e.:

slug = models.SlugField(blank=True)

or we can customise the admin interface so that it automatically prepopulates the slug field as you
type in the category name. To do this update rango/admin.py with the following code:

www.tangowithdjango.com

Models, Templates and Views 69

from django.contrib import admin

from rango.models import Category, Page

...

Add in this class to customise the Admin Interface

class CategoryAdmin(admin.ModelAdmin):

prepopulated_fields = {'slug':('name',)}

Update the registration to include this customised interface

admin.site.register(Category, CategoryAdmin)

...

Try out the admin interface and add in a new category.

Now that we have addressed the first problem, we can ensure that the slug field is also unique, by
adding the constraint to the slug field.

slug = models.SlugField(unique=True)

Now that we have added in the slug field we can now use the slugs to uniquely identify each
category. We could have added the unique constraint earlier, but if we performed the migration and
set everything to be an empty string by default it would have raised an error. This is because the
unique constraint would have been violated. We could have deleted the database and then recreated
everything - but that is not always desirable.

Migration Woes
It’s always best to plan out your database in advance and avoid changing it. Making a
population script means that you easily recreate your database if you need to delete it.

Sometimes it is just better to just delete the database and recreate everything than try and
work out where the conflict is coming from. A neat exercise is to write a script to output
the data in the database so that any changes you make can be saved out into a file that can
be read in later.

Category Page Workflow

To implement the category pages so that they can be accessed via /rango/category/<category-

name-slug>/ we need to make a number of changes and undertake the following steps:

1. Import the Page model into rango/views.py.
2. Create a new view in rango/views.py called show_category(). The show_category() view

will take an additional parameter, category_name_url which will store the encoded category
name.

www.tangowithdjango.com

Models, Templates and Views 70

• We will need helper functions to encode and decode the category_name_url.
3. Create a new template, templates/rango/category.html.
4. Update Rango’s urlpatterns to map the new category view to a URL pattern in ran-

go/urls.py.

We’ll also need to update the index() view and index.html template to provide links to the category
page view.

Category View

In rango/views.py, we first need to import the Page model. This means we must add the following
import statement at the top of the file.

from rango.models import Page

Next, we can add our new view, show_category().

def show_category(request, category_name_slug):

Create a context dictionary which we can pass

to the template rendering engine.

context_dict = {}

try:

Can we find a category name slug with the given name?

If we can't, the .get() method raises a DoesNotExist exception.

So the .get() method returns one model instance or raises an exception.

category = Category.objects.get(slug=category_name_slug)

Retrieve all of the associated pages.

Note that filter() will return a list of page objects or an empty list

pages = Page.objects.filter(category=category)

Adds our results list to the template context under name pages.

context_dict['pages'] = pages

We also add the category object from

the database to the context dictionary.

We'll use this in the template to verify that the category exists.

context_dict['category'] = category

except Category.DoesNotExist:

We get here if we didn't find the specified category.

Don't do anything -

www.tangowithdjango.com

Models, Templates and Views 71

the template will display the "no category" message for us.

context_dict['category'] = None

context_dict['pages'] = None

Go render the response and return it to the client.

return render(request, 'rango/category.html', context_dict)

Our new view follows the same basic steps as our index() view. We first define a context dictionary
and then attempt to extract the data from the models, and add the relevant data to the context
dictionary. We determine which category by using the value passed as parameter category_name_-
slug to the show_category() view function. If the category slug is found in the Category model,
we can then pull out the associated pages, and add this to the context dictionary, context_dict.

Category Template

Now let’s create our template for the new view. In <workspace>/tango_with_django_project/tem-

plates/rango/ directory, create category.html. In the new file, add the following code.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Rango</title>

5 </head>

6 <body>

7 <div>

8 {% if category %}

9 <h1>{{ category.name }}</h1>

10 {% if pages %}

11

12 {% for page in pages %}

13 {{ page.title }}

14 {% endfor %}

15

16 {% else %}

17 No pages currently in category.

18 {% endif %}

19 {% else %}

20 The specified category does not exist!

21 {% endif %}

22 </div>

23 </body>

24 </html>

www.tangowithdjango.com

Models, Templates and Views 72

The HTML code example again demonstrates how we utilise the data passed to the template via
its context through the tags {{ }}. We access the category and pages objects, and their fields e.g.
category.name and page.url.

If the category exists, then we check to see if there are any pages in the category. If so, we iterate
through the pages using the {% for page in pages %} template tags. For each page in the pages

list, we present their title and url attributes. This is displayed in an unordered HTML list (denoted
by the tags). If you are not too familiar with HTML then check out the HTML Tutorial by
W3Schools.com to learn more about the different tags.

Note on Conditional Template Tags
The Django template conditional tag - {% if %} - is a really neat way of determining the
existence of an object within the template’s context. Make sure you check the existence of
an object to avoid errors.

Placing conditional checks in your templates - like {% if category %} in the example
above - alsomakes sense semantically. The outcome of the conditional check directly affects
the way in which the rendered page is presented to the user - and presentational aspects
of your Django applications should be encapsulated within templates.

Parameterised URL Mapping

Now let’s have a look at how we actually pass the value of the category_name_url parameter to
the show_category() function. To do so, we need to modify Rango’s urls.py file and update the
urlpatterns tuple as follows.

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'^about/$', views.about, name='about'),

url(r'^category/(?P<category_name_slug>[\w\-]+)/$',

views.show_category, name='show_category'),

]

We have added in a rather complex entry that will invoke view.show_category() when the URL
pattern r'ˆcategory/(?P<category_name_slug>[\w\-]+)/$' is matched.

There are two things to note here. First we have added a parameter name with in the URL pattern,
i.e. <category_name_slug>, which we will be able to access in our view later on. When you create a
parameterised URL you need to ensure that the parameters that you include in the URL are declared
in the corresponding view. The next thing to note is that the regular expression [\w\-]+) will look
for any sequence of alphanumeric characters e.g. a-z, A-Z, or 0-9 denoted by \w and any hyphens
(-) denoted by \-, and we can match as many of these as we like denoted by the []+ expression.

www.tangowithdjango.com

http://www.w3schools.com/html/
http://www.w3schools.com/html/

Models, Templates and Views 73

The URL pattern will match a sequence of alphanumeric characters and hyphens which are between
the rango/category/ and the trailing /. This sequence will be stored in the parameter category_-
name_slug and passed to views.show_category(). For example, the URL rango/category/python-

books/ would result in the category_name_slug having the value, python-books. However, if the
URL was rango/category/python_books/ or rango/category/££££-$$$$$/ then the sequence of
characters between rango/category/ and the trailing / would not match the regular expression,
and a 404 not found error would result because there would be no matching URL pattern.

All view functions defined as part of a Django applications must take at least one parameter.
This is typically called request - and provides access to information related to the given HTTP
request made by the user. When parameterising URLs, you supply additional named parameters
to the signature for the given view. That is why our show_category() view was defined as def

show_category(request, category_name_slug).

Regex Hell
“Some people, when confronted with a problem, think ‘I know, I’ll use regular expressions.’
Now they have two problems.” Jamie Zawinski

Regular expressionsmay seemhorrible and confusing at first, but there are tons of resources
online to help you. This cheat sheet is an excellent resource for fixing problemswith regular
expressions.

Modifying the Index Template

Our new view is set up and ready to go - but we need to do one more thing. Our index page
template needs to be updated so that it links to the category pages that are listed. We can update the
index.html template to now include a link to the category page via the slug.

<!DOCTYPE html>

{% load staticfiles %}

<html>

<head>

<title>Rango</title>

</head>

<body>

<h1>Rango says...</h1>

<div>

hey there partner!

</div>

www.tangowithdjango.com

http://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/
http://cheatography.com/davechild/cheat-sheets/regular-expressions/

Models, Templates and Views 74

<div>

{% if categories %}

{% for category in categories %}

<!-- Following line changed to add an HTML hyperlink -->

{{ category.name }}

{% endfor %}

{% else %}

There are no categories present.

{% endif %}

</div>

<div>

About Rango

</div>

</body>

</html>

Again, we used the HTML tag to define an unordered list. Within the list, we create a series
of list elements (), each of which in turn contains a HTML hyperlink (<a>). The hyperlink
has an href attribute, which we use to specify the target URL defined by /rango/category/{{

category.slug }} which, for example, would turn into /rango/category/python-books/ for the
category Python Books.

Demo

Let’s try everything out now by visiting the Rango homepage. You should see up to five categories
on the index page. The categories should now be links. Clicking on Django should then take you
to the Django category page, as shown in the figure below. If you see a list of links like Official

Django Tutorial, then you’ve successfully set up the new page.

What happens when you visit a category that does not exist? Try navigating a category which
doesn’t exist, like /rango/category/computers/. Do this by typing the address manually into your
browser’s address bar. You should see a message telling you that the specified category does not
exist.

www.tangowithdjango.com

Models, Templates and Views 75

The links to Django pages.

Exercises
Reinforce what you’ve learnt in this chapter by trying out the following exercises.

• Update the population script to add some value to the views count for each page.
• Modify the index page to also include the top 5 most viewed pages.
• Include a heading for the “Most Liked Categories” and “Most Viewed Pages”.
• Include a link back to the index page from the category page.
• Undertake part three of official Django tutorial if you have not done so already to
reinforce what you’ve learnt here.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial03/

Models, Templates and Views 76

The index page after you complete the exercises, showing the most liked categories and most viewed pages.

Hints

• When updating the population script add in the values to the page dictionaries first
then when iterating through the page dictionaries for each category pass the views
data through i.e. p["views"].

• Remember to re-run the population script so that the views are updated.
• You will need to edit both the index view and the index.html template to put the
most viewed i.e. popular pages on the index page.

• Instead of accessing the Category model, you will have to ask the Page model for
the most viewed pages.

• Remember to pass the list of pages through to the context.
• If you are not sure about the HTML template code to use, you can draw inspiration
from the category.html template code as the markup is essentially the same.

www.tangowithdjango.com

Models, Templates and Views 77

Model Tips
For more tips on working with models you can take a look through the following blog
posts:

1. Best Practices when working with models by Kostantin Moiseenko. In this post you
will find a series of tips and tricks when working with models.

2. How to make your Django Models DRYer by Robert Roskam. In this post you can
see how you can use the property method of a class to reduce the amount of code
needed when accessing related models.

www.tangowithdjango.com

http://steelkiwi.com/blog/best-practices-working-django-models-python/
https://medium.com/@raiderrobert/make-your-django-models-dryer-4b8d0f3453dd#.ozrdt3rsm

7. Forms
In this chapter, we will run through how to capture data through web forms. Django comes with
some neat form handling functionality, making it a pretty straightforward process to collect infor-
mation from users and save it to the database via the models. According to Django’s documentation
on forms, the form handling functionality allows you to:

1. display an HTML form with automatically generated form widgets (like a text field or date
picker);

2. check submitted data against a set of validation rules;
3. redisplay a form in case of validation errors; and
4. convert submitted form data to the relevant Python data types.

One of the major advantages of using Django’s forms functionality is that it can save you a lot of
time and hassle creating the HTML forms.

7.1 Basic Workflow

The basic steps involved in creating a form and handling user input is as follows.

1. If you haven’t already got one, create a forms.py file within your Django application’s
directory to store form-related classes.

2. Create a ModelForm class for each model that you wish to represent as a form.
3. Customise the forms as you desire.
4. Create or update a view to handle the form

• including displaying the form,
• saving the form data, and
• flagging up errors which may occur when the user enters incorrect data (or no data at
all) in the form.

5. Create or update a template to display the form.
6. Add a urlpattern to map to the new view (if you created a newone).

This workflow is a bit more complicated than previous workflows, and the views that we have to
construct have a lot more complexity as well. However, once you undertake the process a few times
it will be pretty clear how everything pieces together.

https://docs.djangoproject.com/en/1.9/topics/forms/
https://docs.djangoproject.com/en/1.9/topics/forms/

Forms 79

7.2 Page and Category Forms

Here, we will implement the necessary infrastructure that will allow users to add categories and
pages to the database via forms.

First, create a file called forms.py within the rango application directory. While this step is not
absolutely necessary (you could put the forms in the models.py), this makes your codebase tidier
and easier to work with.

Creating ModelForm Classes

Within Rango’s forms.pymodule, we will be creating a number of classes that inherit fromDjango’s
ModelForm. In essence, a ModelForm is a helper class that allows you to create a Django Form from a
pre-existing model. As we’ve already got two models defined for Rango (Category and Page), we’ll
create ModelForms for both.

In rango/forms.py add the following code.

1 from django import forms

2 from rango.models import Page, Category

3

4 class CategoryForm(forms.ModelForm):

5 name = forms.CharField(max_length=128,

6 help_text="Please enter the category name.")

7 views = forms.IntegerField(widget=forms.HiddenInput(), initial=0)

8 likes = forms.IntegerField(widget=forms.HiddenInput(), initial=0)

9 slug = forms.CharField(widget=forms.HiddenInput(), required=False)

10

11 # An inline class to provide additional information on the form.

12 class Meta:

13 # Provide an association between the ModelForm and a model

14 model = Category

15 fields = ('name',)

16

17 class PageForm(forms.ModelForm):

18 title = forms.CharField(max_length=128,

19 help_text="Please enter the title of the page.")

20 url = forms.URLField(max_length=200,

21 help_text="Please enter the URL of the page.")

22 views = forms.IntegerField(widget=forms.HiddenInput(), initial=0)

23

24 class Meta:

25 # Provide an association between the ModelForm and a model

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/forms/modelforms/#modelform

Forms 80

26 model = Page

27

28 # What fields do we want to include in our form?

29 # This way we don't need every field in the model present.

30 # Some fields may allow NULL values, so we may not want to include them.

31 # Here, we are hiding the foreign key.

32 # we can either exclude the category field from the form,

33 exclude = ('category',)

34 # or specify the fields to include (i.e. not include the category field)

35 #fields = ('title', 'url', 'views')

We need to specify which fields are included on the form, via fields, or specify which fields are to
be excluded, via exclude.

Django provides us with a number of ways to customise the forms that are created on our behalf.
In the code sample above, we’ve specified the widgets that we wish to use for each field to be
displayed. For example, in our PageForm class, we’ve defined forms.CharField for the title field,
and forms.URLField for url field. Both fields provide text entry for users. Note the max_length

parameters we supply to our fields - the lengths that we specify are identical to the maximum
length of each field we specified in the underlying data models. Go back to the chapter on models
to check for yourself, or have a look at Rango’s models.py file.

You will also notice that we have included several IntegerField entries for the views and likes
fields in each form. Note that we have set the widget to be hidden with the parameter setting
widget=forms.HiddenInput(), and then set the value to zero with initial=0. This is one way to
set the field to zero by default. And since the fields will be hidden the user won’t be able to enter a
value for these fields.

However, as you can see in the PageForm, despite the fact that we have a hidden field, we still need
to include the field in the form. If in fields we excluded views, then the form would not contain
that field (despite it being specified) and so the form would not return the value zero for that field.
This may raise an error depending on how the model has been set up. If in the model we specified
that the default=0 for these fields then we can rely on the model to automatically populate field
with the default value - and thus avoid a not null error. In this case, it would not be necessary to
have these hidden fields. We have also included the field slug in the CategoryForm, and set it to use
the widget=forms.HiddenInput(), but rather than specifying an initial or default value, we have
said the field is not required by the form. This is because our model will be responsible on save()

for populating this field. Essentially, you need to be careful when you define your models and forms
to make sure that the form is going to contain and pass on all the data that is required to populate
your model correctly.

Besides the CharField and IntegerField widgets, many more are available for use. As an example,
Django provides EmailField (for e-mail address entry), ChoiceField (for radio input buttons), and
DateField (for date/time entry). There are many other field types you can use, which perform error
checking for you (e.g. is the value provided a valid integer?).

www.tangowithdjango.com

Forms 81

Perhaps the most important aspect of a class inheriting from ModelForm is the need to define which
model we’re wanting to provide a form for.We take care of this through our nested Meta class. Set the
model attribute of the nested Meta class to the model you wish to use. For example, our CategoryForm
class has a reference to the Category model. This is a crucial step enabling Django to take care of
creating a form in the image of the specified model. It will also help in handling flagging up any
errors along with saving and displaying the data in the form.

We also use the Meta class to specify which fields that we wish to include in our form through the
fields tuple. Use a tuple of field names to specify the fields you wish to include.

More about Forms
Check out the official Django documentation on forms for further information about the
different widgets and how to customise forms.

Creating an Add Category View

With our CategoryForm class now defined, we’re now ready to create a new view to display the
form and handle the posting of form data. To do this, add the following code to rango/views.py.

#Add this import at the top of the file

from rango.forms import CategoryForm

...

def add_category(request):

form = CategoryForm()

A HTTP POST?

if request.method == 'POST':

form = CategoryForm(request.POST)

Have we been provided with a valid form?

if form.is_valid():

Save the new category to the database.

form.save(commit=True)

Now that the category is saved

We could give a confirmation message

But since the most recent category added is on the index page

Then we can direct the user back to the index page.

return index(request)

else:

The supplied form contained errors -

just print them to the terminal.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/forms/

Forms 82

print(form.errors)

Will handle the bad form, new form, or no form supplied cases.

Render the form with error messages (if any).

return render(request, 'rango/add_category.html', {'form': form})

The new add_category() view adds several key pieces of functionality for handling forms. First, we
create a CategoryForm(), then we check if the HTTP request was a POST i.e. if the user submitted
data via the form. We can then handle the POST request through the same URL. The add_category()
view function can handle three different scenarios:

• showing a new, blank form for adding a category;
• saving form data provided by the user to the associated model, and rendering the Rango
homepage; and

• if there are errors, redisplay the form with error messages.

GET and POST

What do we mean by GET and POST? They are two different types of HTTP requests.

• A HTTP GET is used to request a representation of the specified resource. In other
words, we use a HTTP GET to retrieve a particular resource, whether it is a webpage,
image or other file.

• In contrast, a HTTP POST submits data from the client’s web browser to be processed.
This type of request is used for example when submitting the contents of a HTML
form.

• Ultimately, a HTTP POST may end up being programmed to create a new resource
(e.g. a new database entry) on the server. This can later be accessed through a HTTP
GET request.

• Check out the w3schools page on GET vs. POST for more details.

Django’s form handling machinery processes the data returned from a user’s browser via a HTTP
POST request. It not only handles the saving of form data into the chosen model, but will also
automatically generate any error messages for each form field (if any are required). This means that
Django will not store any submitted forms with missing information that could potentially cause
problems for your database’s referential integrity. For example, supplying no value in the category
name field will return an error, as the field cannot be blank.

You’ll notice from the line in which we call render() that we refer to a new template called add_-

category.html. This will contain the relevant Django template code and HTML for the form and
page.

www.tangowithdjango.com

http://www.w3schools.com/tags/ref_httpmethods.asp
https://en.wikipedia.org/wiki/Referential_integrity

Forms 83

Creating the Add Category Template

Create the file templates/rango/add_category.html. Within the file, add the following HTML
markup and Django template code.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Rango</title>

5 </head>

6

7 <body>

8 <h1>Add a Category</h1>

9 <div>

10 <form id="category_form" method="post" action="/rango/add_category/">

11 {% csrf_token %}

12 {% for hidden in form.hidden_fields %}

13 {{ hidden }}

14 {% endfor %}

15 {% for field in form.visible_fields %}

16 {{ field.errors }}

17 {{ field.help_text }}

18 {{ field }}

19 {% endfor %}

20 <input type="submit" name="submit" value="Create Category" />

21 </form>

22 </div>

23 </body>

24 </html>

You can see that within the <body> of the HTML page we placed a <form> element. Looking at the
attributes for the <form> element, you can see that all data captured within this form is sent to the
URL /rango/add_category/ as a HTTP POST request (the method attribute is case insensitive, so you
can do POST or post - both provide the same functionality). Within the form, we have two for loops:

• one controlling hidden form fields, and
• the other visible form fields.

The visible fields i.e. those that will be displayed to the user, are controlled by the fields attribute
within your ModelForm Meta class. These loops produce HTML markup for each form element. For
visible form fields, we also add in any errors that may be present with a particular field and help
text that can be used to explain to the user what he or she needs to enter.

www.tangowithdjango.com

Forms 84

Hidden Fields
The need for hidden as well as visible form fields is necessitated by the fact that HTTP
is a stateless protocol. You can’t persist state between different HTTP requests that can
make certain parts of web applications difficult to implement. To overcome this limitation,
hidden HTML form fields were created which allow web applications to pass important
information to a client (which cannot be seen on the rendered page) in a HTML form, only
to be sent back to the originating server when the user submits the form.

Cross Site Request Forgery Tokens
You should also take note of the code snippet {% csrf_token %}. This is a Cross-Site
Request Forgery (CSRF) token, which helps to protect and secure the HTTP POST action
that is initiated on the subsequent submission of a form. The Django framework requires
the CSRF token to be present. If you forget to include a CSRF token in your forms, a user
may encounter errors when he or she submits the form. Check out the official Django
documentation on CSRF tokens for more information about this.

Mapping the Add Category View

Now we need to map the add_category() view to a URL. In the template we have used the URL
/rango/add_category/ in the form’s action attribute. We now need to create a mapping from the
URL to the View. In rango/urls.py modify the urlpatterns

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'about/$', views.about, name='about'),

url(r'^add_category/$', views.add_category, name='add_category'),

url(r'^category/(?P<category_name_slug>[\w\-]+)/$',

views.show_category, name='show_category'),

]

Ordering doesn’t necessarily matter in this instance. However, take a look at the official Django
documentation on how Django process a request for more information. The URL for adding a
category is /rango/add_category/.

Modifying the Index Page View

As a final step let’s put a link on the index page so that we can easily add categories. Edit the template
rango/index.html and add the following HTML hyperlink in the <div> element with the about link.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.9/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.9/topics/http/urls/#how-django-processes-a-request
https://docs.djangoproject.com/en/1.9/topics/http/urls/#how-django-processes-a-request

Forms 85

Add a New Category

Demo

Now let’s try it out! Start or restart your Django development server, and then point your web
browser to Rango at http://127.0.0.1:8000/rango/. Use your new link to jump to the Add
Category page, and try adding a category. The figure below shows screenshots of the Add Category
and Index Pages.

Adding a new category to Rango with our new form.

Missing Categories
If you add a number of categories, they will not always appear on the index page. This is
because we are only showing the top five categories on the index page. If you log into the
Admin interface, you should be able to view all the categories that you have entered.

Another way to get some confirmation that the category is being added is to update the
add_category()method in rango/views.py and change the line form.save(commit=True)
to be cat = form.save(commit=True). This will give you a reference to an instance of
the category object created by the form. You can then print the category to console (e.g.
print(cat, cat.slug)).

www.tangowithdjango.com

Forms 86

Cleaner Forms

Recall that our Page model has a url attribute set to an instance of the URLField type. In a
corresponding HTML form, Django would reasonably expect any text entered into a url field
to be a correctly formatted, complete URL. However, users can find entering something like
http://www.url.com to be cumbersome - indeed, users may not even know what forms a correct
URL!

URL Checking
Most modern browsers will now check to make sure that the URL is well-formed. So this
example will only work on some browsers. However, it does show you how to clean the
data before you try to save it to the database. If you don’t have an old browser to try this
example (in case you don’t believe it) you could change the URLField to a CharField.

In scenarios where user input may not be entirely correct, we can override the clean() method
implemented in ModelForm. This method is called upon before saving form data to a new model
instance, and thus provides us with a logical place to insert code which can verify - and even fix -
any form data the user inputs. We can check if the value of url field entered by the user starts with
http:// - and if it doesn’t, we can prepend http:// to the user’s input.

class PageForm(forms.ModelForm):

...

def clean(self):

cleaned_data = self.cleaned_data

url = cleaned_data.get('url')

If url is not empty and doesn't start with 'http://',

then prepend 'http://'.

if url and not url.startswith('http://'):

url = 'http://' + url

cleaned_data['url'] = url

return cleaned_data

Within the clean() method, a simple pattern is observed which you can replicate in your own
Django form handling code.

1. Form data is obtained from the ModelForm dictionary attribute cleaned_data.
2. Form fields that you wish to check can then be taken from the cleaned_data dictionary. Use

the .get()method provided by the dictionary object to obtain the form’s values. If a user does
not enter a value into a form field, its entry will not exist in the cleaned_data dictionary. In
this instance, .get() would return None rather than raise a KeyError exception. This helps
your code look that little bit cleaner!

www.tangowithdjango.com

https://support.google.com/webmasters/answer/76329?hl=en
https://support.google.com/webmasters/answer/76329?hl=en

Forms 87

3. For each form field that you wish to process, check that a value was retrieved. If something
was entered, check what the value was. If it isn’t what you expect, you can then add some
logic to fix this issue before reassigning the value in the cleaned_data dictionary.

4. You must always end the clean() method by returning the reference to the cleaned_data

dictionary. Otherwise the changes won’t be applied.

This trivial example shows how we can clean the data being passed through the form before being
stored. This is pretty handy, especially when particular fields need to have default values - or data
within the form is missing, and we need to handle such data entry problems.

Clean Overrides
Overriding methods implemented as part of the Django framework can provide you with
an elegant way to add that extra bit of functionality for your application. There are many
methods which you can safely override for your benefit, just like the clean() method in
ModelForm as shown above. Check out the Official Django Documentation on Models for
more examples on how you can override default functionality to slot your own in.

Exercises
Now that you’ve worked through the chapter, consider the following questions, and how
you could solve them.

• What would happen if you don’t enter in a category name on the add category form?
• What happens when you try to add a category that already exists?
• What happens when you visit a category that does not exist? A hint for a potential
solution to solving this problem can be found below.

• In the section above where we implemented our ModelForm classes, we repeated the
max_length values for fields that we had previously defined in the models chapter.
This is bad practice as we are repeating ourselves! How can you refactor your code
so that you are not repeating the max_length values?

• If you have not done so already undertake part four of the official Django Tutorial
to reinforce what you have learnt here.

• Now let users add pages to each category, see below for some example code and
hints.

Creating an Add Pages View, Template and URL Mapping

A next logical step would be to allow users to add pages to a given category. To do this, repeat the
same workflow above but for adding pages.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/db/models/#overriding-predefined-model-methods
https://docs.djangoproject.com/en/1.9/intro/tutorial04/

Forms 88

• create a new view, add_page(),
• create a new template, rango/add_page.html,
• add a URL mapping, and
• update the category page/view to provide a link from the category add page functionality.

To get you started, here is the code for the add_page() view function.

from rango.forms import PageForm

def add_page(request, category_name_slug):

try:

category = Category.objects.get(slug=category_name_slug)

except Category.DoesNotExist:

category = None

form = PageForm()

if request.method == 'POST':

form = PageForm(request.POST)

if form.is_valid():

if category:

page = form.save(commit=False)

page.category = category

page.views = 0

page.save()

return show_category(request, category_name_slug)

else:

print(form.errors)

context_dict = {'form':form, 'category': category}

return render(request, 'rango/add_page.html', context_dict)

www.tangowithdjango.com

Forms 89

Hints
To help you with the exercises above, the following hints may be of some use to you.

• In the add_page.html template you can access the slug with {{ category.slug }}

because the view passes the category object through to the template via the context
dictionary.

• Ensure that the link only appears when the requested category exists - with or
without pages. i.e. in the template check with {% if cat %} {% else %} A

category by this name does not exist {% endif %}.
• Update Rango’s category.html template with a new hyperlink with a line break
immediately following it: <a href="/rango/category/{{category.slug}}/add_-

page/">Add Page

• Make sure that in your add_page.html template that the form posts to
/rango/category/{{ category.slug }}/add_page/.

• Update rango/urls.pywith a URL mapping (/rango/category/<category_name_-
slug>/add_page/) to handle the above link.

• You can avoid the repetition of max_length parameters through the use of an
additional attribute in your Category class. This attribute could be used to store
the value for max_length, and then be referenced where required.

If you get really stuck, you can always check out our code on GitHub.

www.tangowithdjango.com

https://github.com/leifos/tango_with_django_19/tree/master/code

8. Working with Templates
So far, we’ve created several HTML templates for different pages within our Rango application. As
you’ve created more and more templates, you may have noticed that a lot of the HTML code is
actually repeated. We are violating the DRY Principle. Furthermore, you might have noticed that
the way we have been referring to different pages using hard coded URL paths. Taken together,
maintaining the site will be nightmare, because if we want to make a change to the general site
structure or change a URL path, we will have to modify every template.

In this chapter, we will use template inheritance to overcome the first problem, and theURL template
tag to solve the second problem. We will start with addressing the latter problem first.

8.1 Using Relative URLs in Templates

So far, we have been directly coding the URL of the page or view we want to show within the
template, i.e. About. This kind of hard coding of URLs means that
if we change our URL mappings in urls.py, then we will have to also change all of these URL
references. The preferred way is to use the template tag url to look up the URL in the urls.py files
and dynamically insert the URL path.

It’s pretty simple to include relative URLs in your templates. To refer to the About page, we would
insert the following line into our templates:

About

The Django template engine will look up any urls.py module for a URL pattern with the attribute
name set to about (name='about'), and then reverse match the actual URL. This means if we change
the URL mappings in urls.py, we don’t have to go through all our templates and update them.

One can also reference a URL pattern without a specified name, by referencing the view directly as
shown below.

About

In this example, wemust ensure that the app rango has the view about, containedwithin its views.py
module.

In your app’s index.html template, you will notice that you have a parameterised URL pattern (the
show_category URL/view takes the category.slug as a parameter). To handle this, you can pass
the url template tag the name of the URL/view and the slug within the template, as follows:

https://en.wikipedia.org/wiki/Don't_repeat_yourself

Working with Templates 91

{% for category in categories %}

{{ category.name }}

{% endfor %}

Before you run off to update all the URLs in all your templates with relative URLs, we need to
re-structure and refactor our templates by using inheritance to remove repetition.

URLs and Multiple Django Apps
This book focuses on the development on a single Django app, Rango. However, you may
find yourself working on a Django project with multiple apps being used at once. This
means that you could literally have hundreds of potential URLs with which you may need
to reference. This scenario begs the question how can we organise these URLs? Two apps
may have a view of the same name, meaning a potential conflict would exist.

Django provides the ability to namespace URL configuration modules (e.g. urls.py) for
each individual app that you employ in your project. Simply adding an app_name variable
to your app’s urls.py module is enough. The example below specifies the namespace for
the Rango app to be rango.

from django.conf.urls import url

from rango import views

app_name = 'rango'

urlpatterns = [

url(r'^$', views.index, name='index'),

...

]

Adding an app_name variable would then mean that any URL you reference from the rango
app could be done so like:

About

where the colon in the url command separates the namespace from the URL name. Of
course, this is an advanced feature for when multiple apps are in presence - but it is a
useful trick to know when things start to scale up.

www.tangowithdjango.com

http://django.readthedocs.io/en/1.9.x/intro/tutorial03.html#namespacing-url-names

Working with Templates 92

8.2 Dealing with Repetition

While pretty much every professionally made website that you use will have a series of repeated
components (such as page headers, sidebars, and footers, for example), repeating the HTML for each
of these repeating components is not a particularly wise way to handle this. What if you wanted to
change part of your website’s header? You’d need to go through every page and change each copy of
the header to suit. That could take a long time - and allow the possibility for human error to creep
in.

Instead of spending (or wasting!) large amounts of time copying and pasting your HTML markup,
we can minimise repetition in Rango’s codebase by employing template inheritance provided by
Django’s template language.

The basic approach to using inheritance in templates is as follows.

1. Identify the reoccurring parts of each page that are repeated across your application (i.e.
header bar, sidebar, footer, content pane). Sometimes, it can help to draw up on paper the
basic structure of your different pages to help you spot what components are used in common.

2. In a base template, provide the skeleton structure of a basic page, along with any common
content (i.e. the copyright notice that goes in the footer, the logo and title that appears in the
section). Then, define a number of blocks which are subject to change depending on which
page the user is viewing.

3. Create specific templates for your app’s pages - all of which inherit from the base template -
and specify the contents of each block.

Reoccurring HTML and The Base Template

Given the templates that we have created so far, it should be pretty obvious that we have been
repeating a fair bit of HTML code. Below, we have abstracted away any page specific details to
show the skeleton structure that we have been repeating within each template.

1 <!DOCTYPE html>

2 {% load staticfiles %}

3

4 <html>

5 <head lang="en">

6 <meta charset="UTF-8" />

7 <title>Rango</title>

8 </head>

9 <body>

10 <!-- Page specific content goes here -->

11 </body>

12 </html>

www.tangowithdjango.com

Working with Templates 93

For the time being, let’s make this simple HTML page our app’s base template. Save this markup in
base.html within the templates/rango/ directory (e.g. templates/rango/base.html).

DOCTYPE goes First!
Remember that the <!DOCTYPE html> declaration always needs to be placed on the first line
of your template. Not having a document type declaration on line one may mean that the
resultant page generated from your template will not comply withW3C HTML guidelines.

Template Blocks

Now that we’ve created our base template, we can add template tags to denote what parts of the
template can be overridden by templates that inherit from it. To do this we will be using the block
tag. For example, we can add a body_block to the base template in base.html as follows:

1 <!DOCTYPE html>

2 {% load staticfiles %}

3

4 <html>

5 <head lang="en">

6 <meta charset="UTF-8" />

7 <title>Rango</title>

8 </head>

9 <body>

10 {% block body_block %}

11 {% endblock %}

12 </body>

13 </html>

Recall that standard Django template commands are denoted by {% and %} tags. To start a block,
the command is {% block <NAME> %}, where <NAME> is the name of the block you wish to create.
You must also ensure that you close the block with the {% endblock %} command, again enclosed
within Django template tags.

You can also specify default content for your blocks, which will be used if no inheriting template
defines the given block (see further down). Specifying default content can be easily achieved by
adding HTML markup between the {% block %} and {% endblock %} template commands, just
like in the example below.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Document_type_declaration
https://www.w3.org/standards/webdesign/htmlcss

Working with Templates 94

{% block body_block %}

This is body_block's default content.

{% endblock %}

When we create templates for each page, we will inherit from rango/base.html and override the
contents of body_block. However, you can place as many blocks in your templates as you so desire.
For example, you could create a block for the page title, a block for the footer, a block for the sidebar,
and more. Blocks are a really powerful feature of Django’s templating system, and you can learn
more about them check on Django’s official documentation on templates.

Extract Common Structures
You should always aim to extract as much reoccurring content for your base templates as
possible. While it may be a hassle to do, the time you will save in maintenance will far
outweigh the initial overhead of doing it up front.

Thinking hurts, but it is better than doing lots of grunt work!

Abstracting Further

Now that you have an understanding of blocks within Django templates, let’s take the opportunity
to abstract our base template a little bit further. Reopen the rango/base.html template and modify
it to look like the following.

1 <!DOCTYPE html>

2 {% load staticfiles %}

3

4 <html>

5 <head>

6 <title>

7 Rango -

8 {% block title_block %}

9 How to Tango with Django!

10 {% endblock %}

11 </title>

12 </head>

13 <body>

14 <div>

15 {% block body_block %}

16 {% endblock %}

17 </div>

18 <hr />

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/templates/

Working with Templates 95

19 <div>

20

21 Add New Category

22 About

23 Index

24

25 </div>

26 </body>

27 </html>

From the example above, we have introduced two new features into the base template.

• The first is a template block called title_block. This will allow us to specify a custom page
title for each page inheriting from our base template. If an inheriting page does not override the
block, then the title_block defaults to How to Tango with Django!, resulting in a complete
title of Rango - How to Tango with Django!. Look at the contents of the <title> tag in the
above template to see how this works.

• We have also included the list of links from our current index.html template and placed
them into a HTML <div> tag underneath our body_block block. This will ensure the links
are present across all pages inheriting from the base template. The links are preceded by a
horizontal rule (<hr />) which provides a visual separation for the user between the body_-
block content and the links.

8.3 Template Inheritance

Now that we’ve created a base template with blocks, we can now update all the templates we
have created so that they inherit from the base template. Let’s start by refactoring the template
rango/category.html.

To do this, first remove all the repeated HTML code leaving only the HTML and template
tags/commands specific to the page. Then at the beginning of the template add the following line of
code:

{% extends 'rango/base.html' %}

The extends command takes one parameter - the template that is to be extended/inherited from
(i.e. rango/base.html). The parameter you supply to the extends command should be relative from
your project’s templates directory. For example, all templates we use for Rango should extend from
rango/base.html, not base.html. We can then further modify the category.html template so it
looks like the following complete example.

www.tangowithdjango.com

Working with Templates 96

1 {% extends 'rango/base.html' %}

2 {% load staticfiles %}

3

4 {% block title_block %}

5 {{ category.name }}

6 {% endblock %}

7

8 {% block body_block %}

9 {% if category %}

10 <h1>{{ category.name }}</h1>

11

12 {% if pages %}

13

14 {% for page in pages %}

15 {{ page.title }}

16 {% endfor %}

17

18 {% else %}

19 No pages currently in category.

20 {% endif %}

21 Add a Page

22 {% else %}

23 The specified category does not exist!

24 {% endif %}

25 {% endblock %}

Loading staticfiles

You’ll need to make sure you add {% load staticfiles %} to the top of each template
that makes use of static media. If you don’t, you’ll get an error! Django template modules
must be imported individually for each template that requires them. If you’ve programmed
before, this works somewhat differently from object orientated programming languages
such as Java, where imports cascade down inheriting classes. Notice how we used
the url template tag to refer to rango/<category-name>/add_page/ URL pattern. The
category.slug is passed through as a parameter to the url template tag and Django’s
Template Engine will produce the correct URL for us.

Now that we inherit from rango/base.html, the category.html template is much cleaner extending
the title_block and body_block blocks. You don’t need a well-formatted HTML document because
base.html provides all the groundwork for you. All you’re doing is plugging in additional content
to the base template to create the complete, rendered HTML document that is sent to the client’s
browser. This rendered HTML document will then conform to the standards, containing components
such as the document type declaration on the first line.

www.tangowithdjango.com

Working with Templates 97

More about Templates
Here we have shown how we can minimise the repetition of structure HTML in our
templates. However, the Django templating language is very powerful, and even lets you
create your own template tags.

Templates can also be used to minimise code within your application’s views. For example,
if youwanted to include the same database driven content on each page of your application,
you could construct a template that calls a specific view to handle the repeating portion of
your app’s pages. This then saves you from having to call the Django ORM functions that
gather the required data for the template in every view that renders it.

If you haven’t already done so, now would be a good time to read through the official
Django documentation on templates.

Exercises
Now that you’ve worked through this chapter, there are a number of exercises that you can
work through to reinforce what you’ve learnt regarding Django and templating.

• Update all other previously defined templates in the Rango app to extend from the
new base.html template. Follow the same process as we demonstrated above. Once
completed, your templates should all inherit from base.html.

• While you’re at it, make sure you remove the links from our index.html template.
We don’t need them anymore! You can also remove the link to Rango’s homepage
within the about.html template.

• When you refactor the index.html keep the images that are served up from the
static files and media server.

• Update all references to Rango URLs by using the url template tag. You can also do
this in your views.py module too - check out the reverse() helper function.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/templates/
https://docs.djangoproject.com/en/1.9/ref/urlresolvers/#reverse

Working with Templates 98

Hints

• Start refactoring the about.html template first.
• Update the title_block then the body_block in each template.
• Have the development server running and check the page as you work on it. Don’t
change the whole page to find it doesn’t work. Changing things incrementally and
testing those changes as you go is a much safer solution.

• To reference the links to category pages, you can use the following template code,
paying particular attention to the Django template {% url %} command.

{{ category.name }}

8.4 The render()Method and the request Context

When writing views we have used a number of different methods, the preferred way is to use the
Django shortcutmethod render(). The render()method requires that you pass through the request
as the first argument. The request context houses a lot of information regarding the session, the
user, etc, see the Official Django Documentation on Request objects. By passing the request through
to the template mean that you will also have access to such information when creating templates.
In the next chapter we will access information about the user - but for now check through all of
your views and make sure that they have been implemented using the render()method. Otherwise,
your templates won’t have the information we need later on.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/request-response/#httprequest-objects

Working with Templates 99

Render and Context
As a quick example of the checks you must carry out, have a look at the about() view.
Initially, this was implemented with a hard-coded string response, as shown below. Note
that we only send the string - we don’t make use of the request passed as the request

parameter.

def about(request):

return HttpResponse('

Rango says: Here is the about page.

Index')

To employ the use of a template, we call the render() function and pass through the
request object. This will allow the template engine to access information such as the
request type (e.g. GET/POST), and information relating to the user’s status (have a look at
Chapter 9).

def about(request):

prints out whether the method is a GET or a POST

print(request.method)

prints out the user name, if no one is logged in it prints `AnonymousUser`

print(request.user)

return render(request, 'rango/about.html', {})

Remember, the last parameter of render() is the context dictionary with which you can
use to pass additional data to the Django template engine. As we have no additional data
to give to the template, we pass through an empty dictionary, {}.

8.5 Custom Template Tags

It would be nice to show the different categories that users can browse through in the sidebar on
each page. Given what we have learnt so far we could do the following:

• in the base.html template, we could add some code to display an item list of categories; and
• within each view, we could access the Category object, get all the categories, and return that
in the context dictionary.

However, this is a pretty nasty solution because we will need to be repeatedly including the same
code in all views. A DRYer solution would be to create custom template tags that are included in
the template, and which can request their own data.

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Don't_repeat_yourself

Working with Templates 100

Using Template Tags

Create a directory rango/templatetags, and create two new modules. One must be called __init_-
_.py. This module will also be left blank. The second module must be called, rango_template_-
tags.py, in which you can add the following code.

1 from django import template

2 from rango.models import Category

3

4 register = template.Library()

5

6 @register.inclusion_tag('rango/cats.html')

7 def get_category_list():

8 return {'cats': Category.objects.all()}

From this code snippet, you can see a newmethod called get_category_list(). This method returns
a list of categories - but is mashed up with the template rango/cats.html (as can be seen from the
register.inclusion_tag() decorator). You can now create this template file, and add the following
HTML markup:

1

2 {% if cats %}

3 {% for c in cats %}

4 {{ c.name }}

5 {% endfor %}

6 {% else %}

7 There are no categories present.

8 {% endif %}

9

To use the template tag in your base.html template, first load the custom template tag by including
the command {% load rango_template_tags %} at the top of the base.html template. You can then
create a new block to represent the sidebar - and we can call our new template tag with the following
code.

<div>

{% block sidebar_block %}

{% get_category_list %}

{% endblock %}

</div>

www.tangowithdjango.com

Working with Templates 101

Try it out. Now all pages that inherit from base.html will also include the list of categories (which
we will move to the side later on).

Restart the Server!
You’ll need to restart the Django development server (or ensure it restarted itself) every
time you modify template tags. If the server doesn’t restart, Django won’t register the tags.

Parameterised Template Tags

We can also parameterise the template tags we create, allowing for greater flexibility. As an example,
we’ll use parameterisation to highlight which category we are looking at when visiting its page.
Adding in a parameter is easy - we can update the get_category_list() method as follows.

def get_category_list(cat=None):

return {'cats': Category.objects.all(),

'act_cat': cat}

Note the inclusion of the cat parameter to get_category_list(), which is optional - and if you
don’t pass in a category, None is used as the subsequent value.

We can then update our base.html template which makes use of the custom template tag to pass in
the current category - but only if it exists.

<div>

{% block sidebar_block %}

{% get_category_list category %}

{% endblock %}

</div>

We can also now update the cats.html template, too.

www.tangowithdjango.com

Working with Templates 102

{% for c in cats %}

{% if c == act_cat %}

{{ c.name }}

{% else %}

{{ c.name }}

{% endif %}

{% endfor %}

In the template, we check to see if the category being displayed is the same as the category being
passed through during the for loop (i.e. c == act_cat). If so, we highlight the category name by
making it bold through use of the tag.

8.6 Summary

In this chapter, we showed how we can:

• reduce coupling between URLs and templates by using the url template tag to point to relative
URLs;

• reduced the amount of boilerplate code by using template inheritance; and
• avoid repetitive code appearing in views by creating custom templates tags.

Taken together, your template code should be much cleaner and easier to maintain. Of course,
Django templates offer a lot more functionality - find out more by visiting the Official Django
Documentation on Templates.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/
https://docs.djangoproject.com/en/1.9/ref/templates/

9. User Authentication
The aim of this next part of the tutorial is to get you familiar with the user authentication
mechanisms provided by Django. We’ll be using the auth app provided as part of a standard
Django installation, located in package django.contrib.auth. According to Django’s official
documentation onAuthentication, the application provides the following concepts and functionality.

• The concept of a User and the User Model.
• Permissions, a series of binary flags (e.g. yes/no) that determine what a user may or may not
do.

• Groups, a method of applying permissions to more than one user.
• A configurable password hashing system, a must for ensuring data security.
• Forms and view tools for logging in users, or restricting content.

There’s lots that Django can do for you regarding user authentication. In this chapter, we’ll be
covering the basics to get you started. This will help you build your confidence with the available
tools and their underlying concepts.

9.1 Setting up Authentication

Before you can begin to play around with Django’s authentication offering, you’ll need to make sure
that the relevant settings are present in your Rango project’s settings.py file.

Within the settings.py file find the INSTALLED_APPS list and check that django.contrib.auth and
django.contrib.contenttypes are listed, so that it looks similar to the code below:

INSTALLED_APPS =[

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'rango',

]

https://docs.djangoproject.com/en/1.9/topics/auth/
https://docs.djangoproject.com/en/1.9/topics/auth/

User Authentication 104

While django.contrib.auth provides Djangowith access to the provided authentication system, the
package django.contrib.contenttypes is used by the authentication app to track models installed
in your database.

Migrate, if necessary!
If you had to add django.contrib.auth and django.contrib.contenttypes applications
to your INSTALLED_APPS tuple, you will need to update your database with the $ python

manage.py migrate command. This will add the underlying tables to your database e.g. a
table for the User model.

It’s generally good practice to run the migrate command whenever you add a new app to
your Django project - the app could contain models that’ll need to be synchronised to your
underlying database.

9.2 Password Hashing

Storing passwords as plaintext within a database is something that should never be done under any
circumstances. If the wrong person acquired a database full of user accounts to your app, they could
wreak havoc. Fortunately, Django’s auth app by default stores a hash of user passwords using the
PBKDF2 algorithm, providing a good level of security for your user’s data. However, if you want
more control over how the passwords are hashed, you can change the approach used by Django
in your project’s settings.py module, by adding in a tuple to specify the PASSWORD_HASHERS. An
example of this is shown below.

PASSWORD_HASHERS = (

'django.contrib.auth.hashers.PBKDF2PasswordHasher',

'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',

)

Django considers the order of hashers specified as important, andwill pick and use the first password
hasher in PASSWORD_HASHERS (e.g. settings.PASSWORD_HASHERS[0]). If other password hashers are
specified in the tuple, Django will also use these if the first hasher doesn’t work.

If you want to use a more secure hasher, you can install Bcrypt using pip install bcrypt, and then
set the PASSWORD_HASHERS to be:

www.tangowithdjango.com

http://stackoverflow.com/questions/1197417/why-are-plain-text-passwords-bad-and-how-do-i-convince-my-boss-that-his-treasur
http://stackoverflow.com/questions/1197417/why-are-plain-text-passwords-bad-and-how-do-i-convince-my-boss-that-his-treasur
https://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/PBKDF2
https://pypi.python.org/pypi/bcrypt/

User Authentication 105

PASSWORD_HASHERS = [

'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',

'django.contrib.auth.hashers.BCryptPasswordHasher',

'django.contrib.auth.hashers.PBKDF2PasswordHasher',

'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',

]

As previouslymentioned, Django by default uses the PBKDF2 algorithm to hash passwords. If you do
not specify a PASSWORD_HASHERS tuple in settings.py, Django will use the PBKDF2PasswordHasher
password hasher, by default. You can read more about password hashing in the official Django
documentation on how Django stores passwords.

9.3 Password Validators

As people may be tempted to enter a password that is comparatively easy to guess, a welcome
new feature introduced to Django 1.9 is that of password validation. In your Django project’s
settings.pymodule, youwill notice a list of nested dictionaries with the name AUTH_PASSWORD_VAL-
IDATORS. From the nested dictionaries, you can clearly see that Django 1.9 comes with a number of
pre-built password validators for common password checks, such as length. An OPTIONS dictionary
can be specified for each validator, allowing for easy customisation. If, for example, you wanted
to ensure accepted passwords are at least six characters long, you can set min_length of the
MinimumLengthValidator password validator to 6. This can be seen in the example shown below.

AUTH_PASSWORD_VALIDATORS = [

...

{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',

'OPTIONS': { 'min_length': 6, }

},

...

]

It is also possible to create your own password validators. Although we don’t cover the creation of
custom password validators in this tutorial, refer to the official Django documentation on password
validators for more information.

9.4 The User Model

The User object (located at django.contrib.auth.models.User) is considered to be the core of
Django’s authentication system. A User object represents each of the individuals interacting with a

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/auth/passwords/#how-django-stores-passwords
https://docs.djangoproject.com/en/1.9/topics/auth/passwords/#how-django-stores-passwords
https://docs.djangoproject.com/en/1.9/topics/auth/passwords/#password-validation
https://docs.djangoproject.com/en/1.9/topics/auth/passwords/#password-validation
https://docs.djangoproject.com/en/1.9/topics/auth/passwords/#password-validation

User Authentication 106

Django application. The Django documentation on User objects states that they are used to allow
aspects of the authentication system like access restriction, registration of new user profiles, and the
association of creators with site content.

The User model has five key attributes. They are:

• the username for the user account;
• the account’s password;
• the user’s email address;
• the user’s first name; and
• the user’s surname.

The User model also comes with other attributes such as is_active, is_staff and is_superuser.
These are boolean fields used to denote whether the account is active, owned by a staff member,
or has superuser privileges respectively. Check out the official Django documentation on the user
model for a full list of attributes provided by the base User model.

9.5 Additional User Attributes

If you would like to include other user related attributes than what is provided by the User model,
youwill needed to create amodel that is associated with the Usermodel. For our Rango app, wewant
to include two more additional attributes for each user account. Specifically, we wish to include:

• a URLField, allowing a user of Rango to specify their own website; and
• a ImageField, which allows users to specify a picture for their user profile.

This can be achieved by creating an additional model in Rango’s models.py file. Let’s add a new
model called UserProfile:

class UserProfile(models.Model):

This line is required. Links UserProfile to a User model instance.

user = models.OneToOneField(User)

The additional attributes we wish to include.

website = models.URLField(blank=True)

picture = models.ImageField(upload_to='profile_images', blank=True)

Override the __unicode__() method to return out something meaningful!

Remember if you use Python 2.7.x, define __unicode__ too!

def __str__(self):

return self.user.username

Note that we reference the Usermodel using a one-to-one relationship. Sincewe reference the default
User model, we need to import it within the models.py file:

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/auth/default/#user-objects
https://docs.djangoproject.com/en/1.9/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/1.9/ref/contrib/auth/#django.contrib.auth.models.User

User Authentication 107

from django.contrib.auth.models import User

For Rango, we’ve added two fields to complete our user profile, and provided a __str__() method
to return a meaningful value when a unicode representation of a UserProfile model instance is
requested. Remember, if you are using Python 2, you’ll also need to provide a __unicode__()method
to return a unicode variant of the user’s username.

For the two fields website and picture, we have set blank=True for both. This allows each of the
fields to be blank if necessary, meaning that users do not have to supply values for the attributes.

Furthermore, it should be noted that the ImageField field has an upload_to attribute. The value
of this attribute is conjoined with the project’s MEDIA_ROOT setting to provide a path with which
uploaded profile images will be stored. For example, a MEDIA_ROOT of <workspace>/tango_with_-
django_project/media/ and upload_to attribute of profile_imageswill result in all profile images
being stored in the directory <workspace>/tango_with_django_project/media/profile_images/.
Recall that in the chapter on templates and media files we set up the media root there.

What about Inheriting to Extend?
It may have been tempting to add the additional fields defined above by inheriting from the
Usermodel directly. However, because other applications may also want access to the User
model, it not recommended to use inheritance, but to instead use a one-to-one relationship
within your database.

Take the PIL
The Django ImageField field makes use of the Python Imaging Library (PIL). If you have
not done so already, install PIL via Pip with the command pip install pillow. If you
don’t have jpeg support enabled, you can also install PIL with the command pip install

pillow --global-option="build_ext" --global-option="--disable-jpeg".

You can check what packages are installed in your (virtual) environment by issuing the
command pip list.

To make the UserProfile model data accessible via the Django admin Web interface, import the
new UserProfile model into Rango’s admin.py module.

from rango.models import UserProfile

Now you can register the new model with the admin interface, with the following line.

www.tangowithdjango.com

User Authentication 108

admin.site.register(UserProfile)

Once again, Migrate!
Remember that your database must be updated with the creation of a new model. Run:
$ python manage.py makemigrations rango from your terminal or Command Prompt
to create the migration scripts for the new UserProfile model. Then run: $ python

manage.py migrate to execute the migration which creates the associated tables within
the underlying database.

9.6 Creating a User Registration View and Template

With our authentication infrastructure laid out, we can now begin to build on it by providing users
of our application with the opportunity to create user accounts. We can achieve this by creating a
new view, template and URL mapping to handle user registrations.

Django User Registration Applications
It is important to note that there are several off the shelf user registration applications
available which reduce a lot of the hassle of building your own registration and login
forms.

However, it’s a good idea to get a feeling for the underlying mechanics before using such
applications. This will ensure that you have some sense of what is going on under the hood.
No pain, no gain. It will also reinforce your understanding of working with forms, how to
extend upon the User model, and how to upload media files.

To provide user registration functionality, we will now work through the following steps:

• create a UserForm and UserProfileForm;
• add a view to handle the creation of a new user;
• create a template that displays the UserForm and UserProfileForm; and
• map a URL to the view created.

As a final step to integrate our new registration functionality, we will also:

• link the index page to the register page.

www.tangowithdjango.com

User Authentication 109

Creating the UserForm and UserProfileForm

In rango/forms.py, we now need to create two classes inheriting from forms.ModelForm. We’ll be
creating one for the base User class, as well as one for the new UserProfile model that we just
created. The two ModelForm-inheriting classes allow us to display a HTML form displaying the
necessary form fields for a particular model, taking away a significant amount of work for us.

In rango/forms.py, let’s first create our two classes which inherit from forms.ModelForm. Add the
following code to the module.

class UserForm(forms.ModelForm):

password = forms.CharField(widget=forms.PasswordInput())

class Meta:

model = User

fields = ('username', 'email', 'password')

class UserProfileForm(forms.ModelForm):

class Meta:

model = UserProfile

fields = ('website', 'picture')

You’ll notice that within both classes, we added a nested Meta class. As the name of the nested class
suggests, anything within a nested Meta class describes additional properties about the particular
class to which it belongs. Each Meta class must supply a model field. In the case of the UserForm class
the associated model is the Usermodel. You also need to specify the fields or the fields to exclude,
to indicate which fields associated with the model should be present (or not) on the rendered form.

Here, we only want to show the fields username, email and password associated with the User

model, and the website and picture fields associated with the UserProfile model. For the user

field within UserProfile model, we will need to make this association when we register the user.
This is because when we create a UserProfile instance, we won’t yet have the User instance to
refer to.

You’ll also notice that UserForm includes a definition of the password attribute. While a Usermodel
instance contains a password attribute by default, the rendered HTML form element will not hide
the password. If a user types a password, the password will be visible. By updating the password

attribute, we can specify that the CharField instance should hide a user’s input from prying eyes
through use of the PasswordInput() widget.

Finally, remember to include the required classes at the top of the forms.py module! We’ve listed
them below for your convenience.

www.tangowithdjango.com

http://www.brpreiss.com/books/opus7/html/page598.html
http://www.webopedia.com/TERM/M/meta.html
http://www.webopedia.com/TERM/M/meta.html

User Authentication 110

from django import forms

from django.contrib.auth.models import User

from rango.models import Category, Page, UserProfile

Creating the register() View

Next, we need to handle both the rendering of the form and the processing of form input data.Within
Rango’s views.py, add import statements for the new UserForm and UserProfileForm classes.

from rango.forms import UserForm, UserProfileForm

Once you’ve done that, add the following new view, register().

def register(request):

A boolean value for telling the template

whether the registration was successful.

Set to False initially. Code changes value to

True when registration succeeds.

registered = False

If it's a HTTP POST, we're interested in processing form data.

if request.method == 'POST':

Attempt to grab information from the raw form information.

Note that we make use of both UserForm and UserProfileForm.

user_form = UserForm(data=request.POST)

profile_form = UserProfileForm(data=request.POST)

If the two forms are valid...

if user_form.is_valid() and profile_form.is_valid():

Save the user's form data to the database.

user = user_form.save()

Now we hash the password with the set_password method.

Once hashed, we can update the user object.

user.set_password(user.password)

user.save()

Now sort out the UserProfile instance.

Since we need to set the user attribute ourselves,

we set commit=False. This delays saving the model

until we're ready to avoid integrity problems.

profile = profile_form.save(commit=False)

www.tangowithdjango.com

User Authentication 111

profile.user = user

Did the user provide a profile picture?

If so, we need to get it from the input form and

#put it in the UserProfile model.

if 'picture' in request.FILES:

profile.picture = request.FILES['picture']

Now we save the UserProfile model instance.

profile.save()

Update our variable to indicate that the template

registration was successful.

registered = True

else:

Invalid form or forms - mistakes or something else?

Print problems to the terminal.

print(user_form.errors, profile_form.errors)

else:

Not a HTTP POST, so we render our form using two ModelForm instances.

These forms will be blank, ready for user input.

user_form = UserForm()

profile_form = UserProfileForm()

Render the template depending on the context.

return render(request,

'rango/register.html',

{'user_form': user_form,

'profile_form': profile_form,

'registered': registered})

While the view looks pretty complicated, it’s actually very similar to how we implemented the add
category and add page views. However, here we have to also handle two distinct ModelForm instances
- one for the Usermodel, and one for the UserProfilemodel. We also need to handle a user’s profile
image, if he or she chooses to upload one.

Furthermore, we need to establish a link between the two model instances that we have created.
After creating a new Usermodel instance, we reference it in the UserProfile instance with the line
profile.user = user. This is where we populate the user attribute of the UserProfileForm form,
which we hid from users.

www.tangowithdjango.com

User Authentication 112

Creating the Registration Template

Now we need to make the template that will be used by the new register() view. Create a new
template file, rango/register.html, and add the following code.

1 {% extends 'rango/base.html' %}

2 {% load staticfiles %}

3

4 {% block title_block %}

5 Register

6 {% endblock %}

7

8 {% block body_block %}

9 <h1>About Page</h1>

10 {% if registered %}

11 Rango says: thank you for registering!

12 Return to the homepage.

13 {% else %}

14 Rango says: register here!

15 <form id="user_form" method="post" action="{% url 'register' %}"

16 enctype="multipart/form-data">

17

18 {% csrf_token %}

19

20 <!-- Display each form -->

21 {{ user_form.as_p }}

22 {{ profile_form.as_p }}

23

24 <!-- Provide a button to click to submit the form. -->

25 <input type="submit" name="submit" value="Register" />

26 </form>

27 {% endif %}

28 {% endblock %}

Using the url Template Tag
Note that we are using the url template tag in the above template code e.g. {% url

'register' %}. This means we will have to ensure that when we map the URL, we name
it register.

The first thing to note here is that this template makes use of the registered variable we used in our
view indicating whether registration was successful or not. Note that registered must be False in
order for the template to display the registration form - otherwise the success message is displayed.

www.tangowithdjango.com

User Authentication 113

Next, we have used the as_p template function on the user_form and profile_form. This wraps
each element in the form in a paragraph (denoted by the <p> HTML tag). This ensures that each
element appears on a new line.

Finally, in the <form> element, we have included the attribute enctype. This is because if the user
tries to upload a picture, the response from the form may contain binary data - and may be quite
large. The response therefore will have to be broken into multiple parts to be transmitted back to
the server. As such, we need to denote this with enctype="multipart/form-data". This tells the
HTTP client (the web browser) to package and send the data accordingly. Otherwise, the server
won’t receive all the data submitted by the user.

Multipart Messages and Binary Files
You should be aware of the enctype attribute for the <form> element. When you want users
to upload files from a form, it’s an absolute must to set enctype to multipart/form-data.
This attribute and value combination instructs your browser to send form data in a special
way back to the server. Essentially, the data representing your file is split into a series of
chunks and sent. For more information, check out this great Stack Overflow answer.

Furthermore, remember to include the CSRF token, i.e. {% csrf_token %} within your <form>

element! If you don’t do this, Django’s cross-site forgery protection middleware layer will refuse
to accept the form’s contents, returning an error.

The register() URL Mapping

With our new view and associated template created, we can now add in the URLmapping. In Rango’s
URLs module rango/urls.py, modify the urlpatterns tuple as shown below.

urlpatterns = [

url(r'^$', views.index, name='index'),

url(r'about/$', views.about, name='about'),

url(r'^add_category/$', views.add_category, name='add_category'),

url(r'^category/(?P<category_name_slug>[\w\-]+)/$',

views.show_category,

name='show_category'),

url(r'^category/(?P<category_name_slug>[\w\-]+)/add_page/$',

views.add_page,

name='add_page'),

url(r'^register/$',

views.register,

www.tangowithdjango.com

http://stackoverflow.com/a/4526286
https://en.wikipedia.org/wiki/Cross-site_request_forgery

User Authentication 114

name='register'), # New pattern!

]

The newly added pattern (at the bottom of the list) points the URL /rango/register/ to the
register() view. Also note the inclusion of a name for our new URL, register, which we used
in the template when we used the url template tag, e.g. {% url 'register' %}.

Linking Everything Together

Finally, we can add a link pointing to our new registration URL by modifying the base.html

template. Update base.html so that the unordered list of links that will appear on each page contains
a link allowing users to register for Rango.

Add a New Category

About

Index

Sign Up

Demo

Now everything is plugged together, try it out. Start your Django development server and try to
register as a new user. Upload a profile image if you wish. Your registration form should look like
the one illustrated in the figure below.

www.tangowithdjango.com

User Authentication 115

A screenshot illustrating the basic registration form you create as part of this tutorial.

Upon seeing the message indicating your details were successfully registered, the database should
have a new entry in the User and UserProfilemodels. Check that this is the case by going into the
Django Admin interface.

9.7 Implementing Login Functionality

With the ability to register accounts completed, we now need to provide users of Rango with the
ability to login. To achieve this, we’ll need to undertake the workflow below:

• Create a login in view to handle the processing of user credentials
• Create a login template to display the login form
• Map the login view to a URL
• Provide a link to login from the index page

Creating the login() View

First, open up Rango’s viewsmodule at rango/views.py and create a new view called user_login().
This view will handle the processing of data from our subsequent login form, and attempt to log a
user in with the given details.

www.tangowithdjango.com

User Authentication 116

def user_login(request):

If the request is a HTTP POST, try to pull out the relevant information.

if request.method == 'POST':

Gather the username and password provided by the user.

This information is obtained from the login form.

We use request.POST.get('<variable>') as opposed

to request.POST['<variable>'], because the

request.POST.get('<variable>') returns None if the

value does not exist, while request.POST['<variable>']

will raise a KeyError exception.

username = request.POST.get('username')

password = request.POST.get('password')

Use Django's machinery to attempt to see if the username/password

combination is valid - a User object is returned if it is.

user = authenticate(username=username, password=password)

If we have a User object, the details are correct.

If None (Python's way of representing the absence of a value), no user

with matching credentials was found.

if user:

Is the account active? It could have been disabled.

if user.is_active:

If the account is valid and active, we can log the user in.

We'll send the user back to the homepage.

login(request, user)

return HttpResponseRedirect(reverse('index'))

else:

An inactive account was used - no logging in!

return HttpResponse("Your Rango account is disabled.")

else:

Bad login details were provided. So we can't log the user in.

print("Invalid login details: {0}, {1}".format(username, password))

return HttpResponse("Invalid login details supplied.")

The request is not a HTTP POST, so display the login form.

This scenario would most likely be a HTTP GET.

else:

No context variables to pass to the template system, hence the

blank dictionary object...

return render(request, 'rango/login.html', {})

As before, this view may seem rather complex as it has to handle a variety of scenarios. As shown

www.tangowithdjango.com

User Authentication 117

in previous examples, the user_login() view handles form rendering and processing - where the
form this time contains username and password fields.

First, if the view is accessed via the HTTP GET method, then the login form is displayed. However,
if the form has been posted via the HTTP POST method, then we can handle processing the form.

If a valid form is sent via a POST request, the username and password are extracted from the form.
These details are then used to attempt to authenticate the user. The Django function authenticate()
checks whether the username and password provided actually match to a valid user account. If
a valid user exists with the specified password, then a User object is returned, otherwise None is
returned.

If we retrieve a User object, we can then check if the account is active or inactive - if active, then
we can issue the Django function login(), which officially signifies to Django that the user is to be
logged in.

However, if an invalid form is sent - due to the fact that the user did not add both a username
and password - the login form is presented back to the user with error messages (i.e. an invalid
username/password combination was provided).

You’ll also notice that wemake use of a new class, HttpResponseRedirect. As the namemay suggest
to you, the response generated by an instance of the HttpResponseRedirect class tells the client’s
Web browser to redirect to the URL you provide as the argument. Note that this will return a HTTP
status code of 302, which denotes a redirect, as opposed to an status code of 200 (success). See the
official Django documentation on Redirection to learn more.

Finally, we use another Django method called reverse to obtain the URL of the Rango application.
This looks up the URL patterns in Rango’s urls.py module to find a URL called 'index', and
substitutes in the corresponding pattern. This means that if we subsequently change the URL
mapping, our new view won’t break.

Django provides all of these functions and classes. As such, you’ll need to import them. The following
import statements must now be added to the top of rango/views.py.

from django.contrib.auth import authenticate, login

from django.http import HttpResponseRedirect, HttpResponse

from django.core.urlresolvers import reverse

Creating a Login Template

With our new view created, we’ll need to create a new template allowing users to enter their
credentials. While we know that the template will live in the templates/rango/ directory, we’ll
leave you to figure out the name of the file. Look at the code example above to work out the name
based upon the code for the new user_login() view. In your new template file, add the following
code.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/request-response/#django.http.HttpResponseRedirect

User Authentication 118

{% extends 'rango/base.html' %}

{% load staticfiles %}

{% block title_block %}

Login

{% endblock %}

{% block body_block %}

<h1>Login to Rango</h1>

<form id="login_form" method="post" action="{% url 'login' %}">

{% csrf_token %}

Username: <input type="text" name="username" value="" size="50" />

Password: <input type="password" name="password" value="" size="50" />

<input type="submit" value="submit" />

</form>

{% endblock %}

Ensure that you match up the input name attributes to those that you specified in the user_login()
view. For example, usernamematches to the username, and passwordmatches to the user’s password.
Don’t forget the {% csrf_token %}, either!

Mapping the Login View to a URL

With your login template created, we can now match up the user_login() view to a URL. Modify
Rango’s urls.py module so that the urlpatterns list contains the following mapping.

url(r'^login/$', views.user_login, name='login'),

Linking Together

Our final step is to provide users of Rango with a handy link to access the login page. To do this,
we’ll edit the base.html template inside of the templates/rango/ directory. Add the following link
to your list.

...

Login

If you like, you can also modify the header of the index page to provide a personalised message if
a user is logged in, and a more generic message if the user isn’t. Within the index.html template,
find the message, as shown in the code snippet below.

www.tangowithdjango.com

User Authentication 119

hey there partner!

This line can then be replaced with the following code.

{% if user.is_authenticated %}

howdy {{ user.username }}!

{% else %}

hey there partner!

{% endif %}

As you can see, we have used Django’s template language to check if the user is authenticated with
{% if user.is_authenticated %}. If a user is logged in, then Django gives us access to the user
object. We can tell from this object if the user is logged in (authenticated). If he or she is logged
in, we can also obtain details about him or her. In the example about, the user’s username will be
presented to them if logged in - otherwise the generic hey there partner!message will be shown.

Demo

Start the Django development server and attempt to login to the application. The figure below shows
the screenshots of the login and index page.

Screenshots illustrating the header users receive when not logged in, and logged in with username somebody.

With this completed, user logins should now beworking. To test everything out, try starting Django’s
development server and attempt to register a new account. After successful registration, you should
then be able to login with the details you just provided.

9.8 Restricting Access

Now that users can login to Rango, we can now go about restricting access to particular parts of
the application as per the specification, i.e. that only registered users can add categories and pages.
With Django, there are several ways in which we can achieve this goal.

www.tangowithdjango.com

User Authentication 120

• In the template, we could use the {% if user.authenticated %} template tag to modify how
the page is rendered (shown already).

• In the View, we could directly examine the request object and check if the user is authenti-
cated.

• Or, we could use a decorator function @login_required provided by Django that checks if the
user is authenticated.

The direct approach checks to see whether a user is logged in, via the user.is_authenticated()

method. The user object is available via the request object passed into a view. The following
example demonstrates this approach.

def some_view(request):

if not request.user.is_authenticated():

return HttpResponse("You are logged in.")

else:

return HttpResponse("You are not logged in.")

The third approach uses Python decorators. Decorators are named after a software design pattern by
the same name. They can dynamically alter the functionality of a function, method or class without
having to directly edit the source code of the given function, method or class.

Django provides a decorator called login_required(), which we can attach to any view where we
require the user to be logged in. If a user is not logged in and attempts to access a view decorated
with login_required(), they are then redirected to another page (that you can set) - typically the
login page.

Restricting Access with a Decorator

To try this out, create a view in Rango’s views.py module called restricted(), and add the
following code

@login_required

def restricted(request):

return HttpResponse("Since you're logged in, you can see this text!")

Note that to use a decorator, you place it directly above the function signature, and put a @

before naming the decorator. Python will execute the decorator before executing the code of your
function/method. As a decorator is still a function, you’ll still have to import it if it resides within an
external module. As login_required() exists elsewhere, the following import statement is required
at the top of views.py.

www.tangowithdjango.com

http://wiki.python.org/moin/PythonDecorators
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
https://docs.djangoproject.com/en/1.9/ref/settings/#login-url

User Authentication 121

from django.contrib.auth.decorators import login_required

We’ll also need to add in another pattern to Rango’s urlpatterns list in the urls.py file. Add the
following line of code.

url(r'^restricted/', views.restricted, name='restricted'),

We’ll also need to handle the scenario where a user attempts to access the restricted() view, but is
not logged in. What do we do with the user? The simplest approach is to redirect them to a page they
can access, e.g. the registration page. Django allows us to specify this in our project’s settings.py
module, located in the project configuration directory. In settings.py, define the variable LOGIN_-
URL with the URL you’d like to redirect users to that aren’t logged in, i.e. the login page located at
/rango/login/:

LOGIN_URL = '/rango/login/'

This ensures that the login_required() decorator will redirect any user not logged in to the URL
/rango/login/.

9.9 Logging Out

To enable users to log out gracefully, it would be nice to provide a logout option to users. Django
comes with a handy logout() function that takes care of ensuring that the users can properly and
securely log out. The logout() function will ensure that their session is ended, and that if they
subsequently try to access a view that requires authentication then they will not be able to access
it, unless they log back in.

To provide logout functionality in rango/views.py, add the view called user_logout() with the
following code.

Use the login_required() decorator to ensure only those logged in can access t\

he view.

@login_required

def user_logout(request):

Since we know the user is logged in, we can now just log them out.

logout(request)

Take the user back to the homepage.

return HttpResponseRedirect(reverse('index'))

You’ll also need to import the logout function at the top of views.py.

www.tangowithdjango.com

User Authentication 122

from django.contrib.auth import logout

With the view created, map the URL /rango/logout/ to the user_logout() view by modifying the
urlpatterns list in Rango’s urls.py.

url(r'^logout/$', views.user_logout, name='logout'),

Now that all the machinery for logging a user out has been completed, we can add some finishing
touches. It’d be handy to provide a link from the homepage to allow users to simply click a link to
logout. However, let’s be smart about this: is there any point providing the logout link to a user who
isn’t logged in? Perhaps not - it may be more beneficial for a user who isn’t logged in to be given
the chance to register, for example.

Like in the previous section, we’ll be modifying Rango’s index.html template and making use of the
user object in the template’s context to determine what links we want to show. Find your growing
list of links at the bottom of the page, and replace it with the following code. Note we also add a
link to our restricted page at /rango/restricted/.

{% if user.is_authenticated %}

Restricted Page

Logout

{% else %}

Sign In

Sign Up

{% endif %}

Add a New Category

About

Index

This code states that when a user is authenticated and logged in, he or she can see the Restricted
Page and Logout links. If he or she isn’t logged in, Register Here and Login are presented. As About
and Add a New Category are not within the template conditional blocks, these links are available
to both anonymous and logged in users.

9.10 Taking it Further

In this chapter, we’ve covered several important aspects of managing user authentication within
Django. We’ve covered the basics of installing Django’s django.contrib.auth application into our
project. Additionally, we have also shown how to implement a user profile model that can provide

www.tangowithdjango.com

User Authentication 123

additional fields to the base django.contrib.auth.models.Usermodel. We have also detailed how
to setup the functionality to allow user registrations, login, logout, and to control access. For more
information about user authentication and registration consult Django’s official documentation on
Authentication.

Many Web applications however take the concepts of user authentication further. For example,
you may require different levels of security when registering users, by ensuring a valid e-mail
address is supplied.While we could implement this functionality, why reinvent the wheel when such
functionality already exists? The django-registration-redux app has been developed to greatly
simplify the process of adding extra functionality related to user authentication. We cover how you
can use this package in a following chapter.

Exercises
For now, work on the following two exercises to reinforce what you’ve learnt in this
chapter.

• Customise the application so that only registered users can add or edit categories and
pages, while non-registered can only view or use the categories and pages. You’ll also
have to ensure that the links to add or edit pages appear only if the user browsing
the website is logged in.

• Provide informative error messages when users incorrectly enter their username or
password.

• Keep your templating know-how up to date by converting the restricted page view
to use a template. Call the template restricted.html, and ensure that it too extends
from Rango’s base.html template.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/auth/
https://docs.djangoproject.com/en/1.9/topics/auth/

10. Cookies and Sessions
In this chapter, we will be touching on the basics of handling sessions and storing cookies. Both go
hand in hand with each other, and are of paramount importance in modern day Web applications.
In the previous chapter, the Django framework used sessions and cookies to handle the login and
logout functionality. However, all this was done behind the scenes. Here we will explore exactly
what is going on under the hood, and how we can use cookies ourselves for other purposes.

10.1 Cookies, Cookies Everywhere!

Whenever a request to a website is made, the webserver returns the content of the requested page.
In addition, one or more cookies may also be sent as part of the request. Consider a cookie as a
small piece of information sent from the server to the client. When a request is about to be sent, the
client checks to see if any cookies that match the address of server exist on the client. If so, they are
included in the request. The server can then interpret the cookies as part of the request’s context
and generate a response to suit.

As an example, you may login to a site with a particular username and password. When you have
been authenticated, a cookie may be returned to your browser containing your username, indicating
that you are now logged into the site. At every request, this information is passed back to the
server where your login information is used to render the appropriate page - perhaps including
your username in particular places on the page. Your session cannot last forever, however - cookies
have to expire at some point in time - they cannot be of infinite length. AWeb application containing
sensitive information may expire after only a few minutes of inactivity. A different Web application
with trivial information may expire half an hour after the last interaction - or even weeks into the
future.

Cookie Origins
The term cookie wasn’t actually derived from the food that you eat, but from the term
magic cookie, a packet of data a program receives and sends again unchanged. In 1994,
MCI sent a request to Netscape Communications to implement a way of implementing
persistence across HTTP requests. This was in response to their need to reliably store
the contents of a user’s virtual shopping basket for an e-commerce solution they were
developing. Netscape programmer Lou Montulli took the concept of a magic cookie and
applied it to Web communications.

You can find out more about cookies and their history onWikipedia. Of course, with such a
great idea came a software patent - and you can read US patent 5774670 that was submitted
by Montulli himself.

http://en.wikipedia.org/wiki/HTTP_cookie#History
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=5774670.PN.&OS=PN/5774670&RS=PN/5774670

Cookies and Sessions 125

The passing of information in the form of cookies can open up potential security holes in your
Web application’s design. This is why developers of Web applications need to be extremely careful
when using cookies. When using cookies, a designer must always ask himself or herself: does the
information you want to store as a cookie really need to be sent and stored on a client’s machine? In
many cases, there are more secure solutions to the problem. Passing a user’s credit card number on
an e-commerce site as a cookie for example would be highly insecure. What if the user’s computer
is compromised? A malicious program could take the cookie. From there, hackers would have his or
her credit card number - all because your Web application’s design is fundamentally flawed. This
chapter examines the fundamental basics of client-side cookies - and server-side session storage for
Web applications.

A screenshot of the BBC News website (hosted in the United Kingdom) with the cookie warning message
presented at the top of the page.

Cookies in the EU
In 2011, the European Union (EU) introduced an EU-wide ‘cookie law’, where all hosted
sites within the EU should present a cookie warning message when a user visits the site for
the first time. The figure above demonstrates such a warning on the BBC News website.
You can read about the law here.

If you are developing a site, you’ll need to be aware of this law, and other laws especially
regarding accessibility.

www.tangowithdjango.com

https://ico.org.uk/for-organisations/guide-to-pecr/cookies-and-similar-technologies/

Cookies and Sessions 126

10.2 Sessions and the Stateless Protocol

All correspondence between Web browsers (clients) and servers is achieved through the HTTP
protocol. As previously mentioned, HTTP is a stateless protocol. This means that a client computer
running a Web browser must establish a new network connection (a TCP connection) to the server
each time a resource is requested (HTTP GET) or sent (HTTP POST) ¹.

Without a persistent connection between the client and server, the software on both ends cannot
simply rely on connections alone to hold session state. For example, the client would need to tell
the server each time who is logged on to the Web application on a particular computer. This
is known as a form of dialogue between the client and server, and is the basis of a session - a
semi-permanent exchange of information. Being a stateless protocol, HTTP makes holding session
state pretty challenging, but there are luckily several techniques we can use to circumnavigate this
problem.

The most commonly used way of holding state is through the use of a session ID stored as a cookie
on a client’s computer. A session ID can be considered as a token (a sequence of characters, or a
string) to identify a unique session within a particular Web application. Instead of storing all kinds
of information as cookies on the client (such as usernames, names, or passwords), only the session ID
is stored, which can then bemapped to a data structure on theWeb server.Within that data structure,
you can store all of the information you require. This approach is amuch more secureway to store
information about users. This way, the information cannot be compromised by a insecure client or
a connection which is being snooped.

If your browser supports cookies, pretty much all websites create a new session for you when
you visit. You can see this for yourself now - check out Figure fig-session-id. In Google Chrome’s
developer tools, you can view cookies that are sent by the Web server you’ve accessed. In the figure
below, you can observe the selected cookie sessionid. The cookie contains a series of letters and
numbers that Django uses to uniquely identify your session. From there, all your session details can
be accessed - but only on the server side.

¹The latest version of the HTTP standard HTTP 1.1 actually supports the ability for multiple requests to be sent in one TCP network connection.
This provides huge improvements in performance, especially over high-latency network connections (such as via a traditional dial-up modem and
satellite). This is referred to as HTTP pipelining, and you can read more about this technique on Wikipedia.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Session_(computer_science)
http://en.wikipedia.org/wiki/HTTP_pipelining

Cookies and Sessions 127

A screenshot of Google Chrome with the Developer Tools opened - check out the cookie sessionid.

Have a closer look at the figure above. Do you notice the token csrftoken? This cookie is added by
Django to reduce the risk of cross-site forgery occurring when the user submits forms.

Without Cookies
An alternative way of persisting state information without cookies is to encode the Session
ID within the URL. For example, you may have seen PHP pages with URLs like this one:
http://www.site.com/index.php?sessid=omgPhPwtfIsThisIdDoingHere332i942394.
This means you don’t need to store cookies on the client machine, but the URLs become
pretty ugly. These URLs go against the principles of Django - clean, human-friendly URLs.

10.3 Setting up Sessions in Django

Although this should already be setup and working correctly, it’s nevertheless good practice to
learn which Django modules provide which functionality. In the case of sessions, Django provides
middleware that implements session functionality.

To check that everything is in order, open your Django project’s settings.py file. Within the file,
locate the MIDDLEWARE_CLASSES list. You should find within this list a module represented by the
string django.contrib.sessions.middleware.SessionMiddleware. If you can’t see it, add it to the
list now. It is the SessionMiddleware middleware that enables the creation of unique sessionid

cookies.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/middleware/

Cookies and Sessions 128

The SessionMiddleware is designed to work flexibly with different ways to store session infor-
mation. There are many approaches that can be taken - you could store everything in a file,
in a database, or even in a in-memory cache. The most straightforward approach is to use the
django.contrib.sessions application to store session information in a Django model/database
(specifically, the model django.contrib.sessions.models.Session). To use this approach, you’ll
also need to make sure that django.contrib.sessions is in the INSTALLED_APPS tuple of your
Django project’s settings.py file. Remember, if you add the application now, you’ll need to update
your database with the usual migration commands.

Caching Sessions
If you want faster performance, you may want to consider a cached approach for storing
session information. You can check out the official Django documentation for advice on
cached sessions.

10.4 A Cookie Tasting Session

While all modern Web browsers support cookies, certain cookies may get blocked depending on
your browser’s security level. Check that you’ve enabled support for cookies before continuing.

Testing Cookie Functionality

To test out cookies, you can make use of some convenience methods provided by Django’s request
object. The three of particular interest to us are set_test_cookie(), test_cookie_worked() and
delete_test_cookie(). In one view, you will need to set the test cookie. In another, you’ll need to
test that the cookie exists. Two different views are required for testing cookies because you need to
wait to see if the client has accepted the cookie from the server.

We’ll use two pre-existing views for this simple exercise, index() and about(). Instead of displaying
anything on the pages themselves, we’ll be making use of the terminal output from the Django
development server to verify whether cookies are working correctly.

In Rango’s views.py file, locate your index() view. Add the following line to the view. To ensure
the line is executed, make sure you put it as the first line of the view.

request.session.set_test_cookie()

In the about() view, add the following three lines to the top of the function.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/sessions/#using-cached-sessions
https://docs.djangoproject.com/en/1.9/topics/http/sessions/#using-cached-sessions

Cookies and Sessions 129

if request.session.test_cookie_worked():

print("TEST COOKIE WORKED!")

request.session.delete_test_cookie()

With these small changes saved, run the Django development server and navigate to Rango’s
homepage, http://127.0.0.1:8000/rango/. Now navigate to the registration page, you should see
TEST COOKIE WORKED! appear in your Django development server’s console, like in the figure below.

A screenshot of the Django development server’s console output with the TEST COOKIE WORKED! message.

If the message isn’t displayed, you’ll want to check your browser’s security settings. The settings
may be preventing the browser from accepting the cookie.

10.5 Client Side Cookies: A Site Counter Example

Now we know how cookies work, let’s implement a very simple site visit counter. To achieve this,
we’re going to be creating two cookies: one to track the number of times the user has visited the
Rango website, and the other to track the last time he or she accessed the site. Keeping track of the
date and time of the last access will allow us to only increment the site counter once per day, for
example, and thus avoid people spamming the site to increment the counter.

The sensible place to assume a user enters the Rango site is at the index page. Open rango/views.py

and edit the index() view as follows:

Let’s first make a function to handle the cookies given the request and response (visitor_cookie_-
handler()), and then we can include this function in the index() view. In views.py add in the

www.tangowithdjango.com

Cookies and Sessions 130

following function. Note that it is not technically a view, because it does not return a response - it
is just a helper function.

def visitor_cookie_handler(request, response):

Get the number of visits to the site.

We use the COOKIES.get() function to obtain the visits cookie.

If the cookie exists, the value returned is casted to an integer.

If the cookie doesn't exist, then the default value of 1 is used.

visits = int(request.COOKIES.get('visits', '1'))

last_visit_cookie = request.COOKIES.get('last_visit', str(datetime.now()))

last_visit_time = datetime.strptime(last_visit_cookie[:-7],

'%Y-%m-%d %H:%M:%S')

If it's been more than a day since the last visit...

if (datetime.now() - last_visit_time).days > 0:

visits = visits + 1

#update the last visit cookie now that we have updated the count

response.set_cookie('last_visit', str(datetime.now()))

else:

visits = 1

set the last visit cookie

response.set_cookie('last_visit', last_visit_cookie)

Update/set the visits cookie

response.set_cookie('visits', visits)

This function takes the request object and the response object - because we want to be able to access
the incoming cookies from the request, and add or update cookies in the response. In the function,
you can see that we call the request.COOKIES.get() function, which is a helper function provided
by Django. If the cookie exists, it returns the value. If it does not exist, we can provide a default
value. Once we have the values for each cookie, we can calculate if a day has elapses between the
last visit or not.

If you want to test this code out without having to wait a day, you can change days to seconds. That
way the visit counter can be updated every second, as opposed to every day.

Note that all cookie values are returned as strings; do not assume that a cookie storing whole
numbers will return an integer. You have to manually cast this to the correct type yourself. If a
cookie does not exist, you can create a cookie with the set_cookie()method of the response object
you create. The method takes in two values, the name of the cookie you wish to create (as a string),
and the value of the cookie. In this case, it doesn’t matter what type you pass as the value - it will
be automatically cast to a string.

Since we are using the datetime we need to import this into views.py.

www.tangowithdjango.com

Cookies and Sessions 131

from datetime import datetime

Next, update the index() view to call the cookie_handler_function(). To do this we need to extract
the response first.

def index(request):

category_list = Category.objects.order_by('-likes')[:5]

page_list = Page.objects.order_by('-views')[:5]

context_dict = {'categories': category_list, 'pages': page_list}

Obtain our Response object early so we can add cookie information.

response = render(request, 'rango/index.html', context_dict)

Call function to handle the cookies

visitor_cookie_handler(request, response)

Return response back to the user, updating any cookies that need changed.

return response

A screenshot of Google Chrome with the Developer Tools open showing the cookies for Rango. Note the visits
cookie - the user has visited a total of six times, with each visit at least one day apart.

www.tangowithdjango.com

Cookies and Sessions 132

Now if you visit the Rango homepage, and inspect the developer tools provided by your browser,
you should be able to see the cookies visits and last_visit. The figure above demonstrates the
cookies in action. Instead of using the developer tools, you could update the index.html and add
<p> visits: {{ visits }}</p> to the template to show the number of visits.

10.6 Session Data

The previous example shows how we can store and manipulate client side cookies - or the data
stored on the client. However, a more secure way to save session information is to store any such
data on the server side. We can then use the session ID cookie that is stored on the client side (but
is effectively anonymous) as the key to access the data.

To use session based cookies you need to perform the following steps.

1. Make sure that the MIDDLEWARE_CLASSES list found in the settings.py module contains
django.contrib.sessions.middleware.SessionMiddleware.

2. Configure your session backend. Make sure that django.contrib.sessions is in your
INSTALLED_APPS in settings.py. If not, add it, and run the database migration command,
python manage.py migrate.

3. By default a database backend is assumed, but you might want to a different setup (i.e. a
cache). See the official Django Documentation on Sessions for other backend configurations.

Instead of storing the cookies directly in the request (and thus on the client’s machine), you
can access server-side data via the method request.session.get() and store them with re-

quest.session[]. Note that a session ID cookie is still used to remember the client’s machine (so
technically a browser side cookie exists). However, all the user/session data is stored server side.
Django’s session middleware handles the client side cookie and the storing of the user/session data.

To use the server side data, we need to refactor the code we have written so far. First, we need to
update the visitor_cookie_handler() function so that it accesses the cookies on the server side.
We can do this by calling request.session.get(), and store them by placing them in the dictionary
request.session[]. To help us along, we have made a helper function called get_server_side_-

cookie() that asks the request for a cookie. If the cookie is in the session data, then its value is
returned. Otherwise, the default value is returned.

Since all the cookies are stored server side, we won’t be changing the response directly. Because of
this, we can remove response from the visitor_cookie_handler() function definition.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/sessions/

Cookies and Sessions 133

A helper method

def get_server_side_cookie(request, cookie, default_val=None):

val = request.session.get(cookie)

if not val:

val = default_val

return val

Updated the function definition

def visitor_cookie_handler(request):

visits = int(get_server_side_cookie(request, 'visits', '1'))

last_visit_cookie = get_server_side_cookie(request,

'last_visit',

str(datetime.now()))

last_visit_time = datetime.strptime(last_visit_cookie[:-7],

'%Y-%m-%d %H:%M:%S')

If it's been more than a day since the last visit...

if (datetime.now() - last_visit_time).days > 0:

visits = visits + 1

#update the last visit cookie now that we have updated the count

request.session['last_visit'] = str(datetime.now())

else:

visits = 1

set the last visit cookie

request.session['last_visit'] = last_visit_cookie

Update/set the visits cookie

request.session['visits'] = visits

Now that we have updated the handler function, we can now update the index() view. First change
visitor_cookie_handler(request, response) to visitor_cookie_handler(request). Then add
in the following line to pass the number of visits to the context dictionary.

context_dict['visits'] = request.session['visits']

Make sure that these lines are executed before render() is called, or your changes won’t be executed.
The index() view should look like the code below.

www.tangowithdjango.com

Cookies and Sessions 134

def index(request):

request.session.set_test_cookie()

category_list = Category.objects.order_by('-likes')[:5]

page_list = Page.objects.order_by('-views')[:5]

context_dict = {'categories': category_list, 'pages': page_list}

visitor_cookie_handler(request)

context_dict['visits'] = request.session['visits']

response = render(request, 'rango/index.html', context=context_dict)

return response

Before you restart the Django development server, delete the existing client side cookies to start
afresh. See the warning below for more information.

Avoiding Cookie Confusion
It’s highly recommended that you delete any client-side cookies for Rango before you start
using session-based data. You can do this in your browser’s developer tools by deleting each
cookie individually, or simply clear your browser’s cache entirely - ensuring that cookies
are deleted in the process.

Data Types and Cookies
An added advantage of storing session data server-side is its ability to cast data from strings
to the desired type. This only works however for built-in types, such as int, float, long,
complex and boolean. If you wish to store a dictionary or other complex type, don’t expect
this to work. In this scenario, you might want to consider pickling your objects.

10.7 Browser-Length and Persistent Sessions

When using cookies you can use Django’s session framework to set cookies as either browser-length
sessions or persistent sessions. As the names of the two types suggest:

• browser-length sessions expire when the user closes his or her browser; and
• persistent sessions can last over several browser instances - expiring at a time of your choice.
This could be half an hour, or even as far as a month in the future.

By default, browser-length sessions are disabled. You can enable them by modifying your Django
project’s settings.py module. Add the variable SESSION_EXPIRE_AT_BROWSER_CLOSE, setting it to
True.

www.tangowithdjango.com

http://docs.python.org/2/library/stdtypes.html
https://wiki.python.org/moin/UsingPickle

Cookies and Sessions 135

Alternatively, persistent sessions are enabled by default, with SESSION_EXPIRE_AT_BROWSER_CLOSE

either set to False, or not being present in your project’s settings.py file. Persistent sessions have
an additional setting, SESSION_COOKIE_AGE, which allows you to specify the age of which a cookie
can live to. This value should be an integer, representing the number of seconds the cookie can live
for. For example, specifying a value of 1209600 will mean your website’s cookies expire after a two
week (14 day) period.

Check out the available settings you can use on the official Django documentation on cookies for
more details. You can also check out Eli Bendersky’s blog for an excellent tutorial on cookies and
Django.

10.8 Clearing the Sessions Database

Sessions accumulate easily, and the data store that contains session information does too. If you are
using the database backend for Django sessions, you will have to periodically clear the database
that stores the cookies. This can be done using $ python manage.py clearsessions. The official
Django documentation suggests running this daily as a Cron job. If you don’t, you could find your
app’s performance begin to degrade when it begins to experience more and more users.

10.9 Basic Considerations and Workflow

When using cookies within your Django application, there are a few things you should consider.

• First, consider what type of cookies your Web application requires. Does the information
you wish to store need to persist over a series of user browser sessions, or can it be safely
disregarded upon the end of one session?

• Think carefully about the information you wish to store using cookies. Remember, storing
information in cookies by their definition means that the information will be stored on
client’s computers, too. This is a potentially huge security risk: you simply don’t know
how compromised a user’s computer will be. Consider server-side alternatives if potentially
sensitive information is involved.

• As a follow-up to the previous bullet point, remember that users may set their browser’s
security settings to a high level that could potentially block your cookies. As your cookies
could be blocked, your site may function incorrectly. You must cater for this scenario - you
have no control over the client browser’s setup.

If client-side cookies are the right approach for you, then work through the following steps.

1. You must first perform a check to see if the cookie you want exists. Checking the request

parameter parameter will allow you to do this. The request.COOKIES.has_key('<cookie_-

name>') function returns a boolean value indicating whether a cookie <cookie_name> exists
on the client’s computer or not.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/settings/#session-cookie-age
http://eli.thegreenplace.net/2011/06/24/django-sessions-part-i-cookies/
https://docs.djangoproject.com/en/1.9/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.9/topics/http/sessions/#clearing-the-session-store
https://en.wikipedia.org/wiki/Cron

Cookies and Sessions 136

2. If the cookie exists, you can then retrieve its value - again via the request parameter - with
request.COOKIES[]. The COOKIES attribute is exposed as a dictionary, so pass the name of the
cookie you wish to retrieve as a string between the square brackets. Remember, cookies are all
returned as strings, regardless of what they contain. You must therefore be prepared to cast
to the correct type (with int() or float(), for example).

3. If the cookie doesn’t exist, or you wish to update the cookie, pass the value you wish to save to
the response you generate. response.set_cookie('<cookie_name>', value) is the function
you call, where two parameters are supplied: the name of the cookie, and the value you wish
to set it to.

If you need more secure cookies, then use session based cookies.

1. Firstly, ensure that the MIDDLEWARE_CLASSES list in your Django project’s settings.pymodule
contains django.contrib.sessions.middleware.SessionMiddleware. If it doesn’t, add it to
the list.

2. Configure your session backend SESSION_ENGINE. See the official Django Documentation on
Sessions for the various backend configurations.

3. Check to see if the cookie exists via requests.sessions.get().
4. Update or set the cookie via the session dictionary, requests.session['<cookie_name>'].

Exercises
Now you’ve read through this chapter and tried out the code, give these exercises a go.

• Check that your cookies are server side. Clear the browser’s cache and cookies,
then check to make sure you can’t see the last_visit and visits variables in the
browser. Note you will still see the sessionid cookie. Django uses this cookie to
look up the session in the database where it stores all the server side cookies about
that session.

• Update the About page view and template telling the visitors how many times they
have visited the site. Remember to call the visitor_cookie_handler() before you
attempt to get the visits cookie from the request.session dictionary, otherwise
if the cookie is not set it will raise an error.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/sessions/
https://docs.djangoproject.com/en/1.9/topics/http/sessions/

11. User Authentication with
Django-Registration-Redux

In the previous chapter, we added in login and registration functionality by manually coding up
the URLs, views and templates. However, such functionality is common to many web application
so developers have created numerous add-on applications that can be included in your Django
project to reduce the amount of code required to provide login, registration, one-step and two-
step authentication, password change, password recovery, etc. In this chapter, we will be using the
package django-registration-redux to provide these facilities.

This will mean we will need to re-factor our code to remove the login and registration func-
tionality we previously created, and then setup and configure our project to include the django-

registration-redux application. This chapter also will provide you with some experience of using
external applications and show you how easily they can be plugged into your Django project.

11.1 Setting up Django Registration Redux

To start we need to first install django-registration-redux version 1.4 into your environment
using pip.

pip install -U django-registration-redux==1.4

Now that it is installed, we need to tell Django that we will be using this application. Open up the
settings.py file, and update the INSTALLED_APPS list:

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'rango',

'registration' # add in the registration package

]

While you are in the settings.py file you can also add the following variables that are part of the
registrations package’s configuration (these settings should be pretty self explanatory):

User Authentication with Django-Registration-Redux 138

If True, users can register

REGISTRATION_OPEN = True

One-week activation window; you may, of course, use a different value.

ACCOUNT_ACTIVATION_DAYS = 7

If True, the user will be automatically logged in.

REGISTRATION_AUTO_LOGIN = True

The page you want users to arrive at after they successfully log in

LOGIN_REDIRECT_URL = '/rango/'

The page users are directed to if they are not logged in,

and are trying to access pages requiring authentication

LOGIN_URL = '/accounts/login/'

In tango_with_django_project/urls.py, you can now update the urlpatterns so that it includes
a reference to the registration package:

url(r'^accounts/', include('registration.backends.simple.urls')),

The django-registration-redux package provides a number of different registration backends,
depending on your needs. For example you may want a two-step process, where user is sent a
confirmation email, and a verification link. Here we will be using the simple one-step registration
process, where a user sets up their account by entering in a username, email, and password, and is
automatically logged in.

11.2 Functionality and URL mapping

The Django Registration Redux package provides the machinery for numerous functions. In the
registration.backend.simple.urls, it provides the following mappings:

• registration -> /accounts/register/

• registration complete -> /accounts/register/complete/

• login -> /accounts/login/

• logout -> /accounts/logout/

• password change -> /password/change/

• password reset -> /password/reset/

while in the registration.backends.default.urls it also provides the functions for activating the
account in a two stage process:

• activation complete (used in the two-step registration) -> activate/complete/

• activate (used if the account action fails) -> activate/<activation_key>/

www.tangowithdjango.com

User Authentication with Django-Registration-Redux 139

• activation email (notifies the user an activation email has been sent out)

– activation email body (a text file, that contains the activation email text)
– activation email subject (a text file, that contains the subject line of the
activation email)

Now the catch. While Django Registration Redux provides all this functionality, it does not provide
the templates because these tend to be application specific. So we need to create the templates
associated with each view.

11.3 Setting up the Templates

In the Django Registration Redux Quick Start Guide, it provides an overview of what templates are
required, but it is not immediately clear what goes within each template. Rather than try and work
it out from the code, we can take a look at a set of templates written by Anders Hofstee to quickly
get the gist of what we need to code up.

First, create a new directory in the templates directory, called registration. This is where we will
house all the pages associated with the Django Registration Redux application, as it will look in this
directory for the templates it requires.

Login Template

In templates/registration create the file, login.html with the following code:

{% extends "rango/base.html" %}

{% block body_block %}

<h1>Login</h1>

<form method="post" action=".">

{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Log in" />

<input type="hidden" name="next" value="{{ next }}" />

</form>

<p>

Not a member?

Register

</p>

{% endblock %}

Notice that whenever a URL is referenced, the url template tag is used to reference it. If you visit,
http://127.0.0.1:8000/accounts/ then you will see the list of URL mappings, and the names
associated with each URL (assuming that DEBUG=True in settings.py).

www.tangowithdjango.com

https://django-registration-redux.readthedocs.org/en/latest/quickstart.html
https://github.com/macdhuibh/django-registration-templates

User Authentication with Django-Registration-Redux 140

Registration Template

In templates/registration create the file, registration_form.html with the following code:

{% extends "rango/base.html" %}

{% block body_block %}

<h1>Register Here</h1>

<form method="post" action=".">

{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Submit" />

</form>

{% endblock %}

Registration Complete Template

In templates/registration create the file, registration_complete.html with the following code:

{% extends "rango/base.html" %}

{% block body_block %}

<h1>Registration Complete</h1>

<p>You are now registered</p>

{% endblock %}

Logout Template

In templates/registration create the file, logout.html with the following code:

{% extends "rango/base.html" %}

{% block body_block %}

<h1>Logged Out</h1>

<p>You are now logged out.</p>

{% endblock %}

Try out the Registration Process

Run the server and visit: http://127.0.0.1:8000/accounts/register/ Note how the registration form
contains two fields for password - so that it can be checked. Try registering, but enter different
passwords.

While this works, not everything is hooked up.

www.tangowithdjango.com

http://127.0.0.1:8000/accounts/register/

User Authentication with Django-Registration-Redux 141

Refactoring your project

Now you will need to update the base.html so that the new registration URLs and views are used.

• Update register to point to .
• Update login to point to .
• Update logout to point to .
• In settings.py, update LOGIN_URL to be '/accounts/login/'.

Notice that for the logout, we have included a ?next=/rango/. This is so when the user logs out, it
will redirect them to the index page of Rango. If we exclude it, then they will be directed to the log
out page (but that would not be very nice).

Next, decommission the register, login, logout functionality from the rango application, i.e.
remove the URLs, views, and templates (or comment them out).

Modifying the Registration Flow

At the moment, when users register, it takes them to the registration complete page. This feels a bit
clunky; so instead, we can take them to themain index page. Overriding the RegistrationView pro-

vided by registration.backends.simple.views can do this. Update the tango_with_django_-

project/urls.py by importing RegistrationView, add in the following registration class.

from registration.backends.simple.views import RegistrationView

Create a new class that redirects the user to the index page,

#if successful at logging

class MyRegistrationView(RegistrationView):

def get_success_url(self, user):

return '/rango/'

Then update the urlpatterns list in your Django project’s urls.pymodule by adding the following
line before the pattern for accounts. Note that this is not the urls.py module within the rango

directory!

url(r'^accounts/register/$',

MyRegistrationView.as_view(),

name='registration_register'),

www.tangowithdjango.com

User Authentication with Django-Registration-Redux 142

This will allow for accounts/register to be matched before any other accounts/ URL. This allows
us to redirect accounts/register to our customised registration view.

Exercise and Hints

• Provide users with password change functionality.
• Hint: see Anders Hofstee’s Templates to get started.
• Hint: the URL to change passwords is accounts/password/change/ and the URL to
denote the password has been changed is: accounts/password/change/done/

www.tangowithdjango.com

https://github.com/macdhuibh/django-registration-templates/tree/master/registration

12. Bootstrapping Rango
In this chapter, we will be styling Rango using the Twitter Bootstrap 4 Alpha toolkit. Bootstrap is
the most popular HTML, CSS, JS Framework, which we can use to style our application. The toolkit
lets you design and style responsive web applications, and is pretty easy to use once you get familiar
with it.

Cascading Style Sheets
If you are not familiar with CSS, have a look at the CSS crash course. We provide a quick
guide on the basic of Cascading Style Sheets.

Now take a look at the Bootstrap 4.0 website - it provides you with sample code and examples of
the different components and how to style them by added in the appropriate style tags, etc. On the
Bootstrap website they provide a number of example layouts which we can base our design on.

To style Rango we have identified that the dashboard style more or less meets our needs in terms of
the layout of Rango, i.e. it has a menu bar at the top, a side bar (which we will use to show categories)
and a main content pane.

Download and save the HTML source for the Dashboard layout to a file called, base_boot-
strap.html and save it to your templates/rango folder.

Before we can use the template, we need tomodify the HTML so that we can use it in our application.
The changes that we performed are listed below along with the updated HTML (so that you don’t
have to go to the trouble).

• Replaced all references of ../../ to be http://v4-alpha.getbootstrap.com/.
• Replaced dashboard.css with the absolute reference:

– http://getbootstrap.com/examples/dashboard/dashboard.css

• Removed the search form from the top navigation bar.
• Stripped out all the non-essential content from the HTML and replaced it with:

– {% block body_block %}{% endblock %}

• Set the title element to be:
– <title> Rango - {% block title %}How to Tango with Django!{% endblock %} </ti-

tle>

• Changed project name to be Rango.
• Added the links to the index page, login, register, etc to the top nav bar.
• Added in a side block, i.e., {% block side_block %}{% endblock %}

• Added in {% load staticfiles %} after the DOCTYPE tag.

http://v4-alpha.getbootstrap.com/
http://v4-alpha.getbootstrap.com/examples/
http://v4-alpha.getbootstrap.com/examples/dashboard/

Bootstrapping Rango 144

12.1 The New Base Template

<!DOCTYPE html>

{% load staticfiles %}

{% load rango_template_tags %}

<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

<meta name="description" content="">

<meta name="author" content="">

<link rel="icon" href="{% static 'images/favicon.ico' %}">

<title>

Rango - {% block title %}How to Tango with Django!{% endblock %}

</title>

<!-- Bootstrap core CSS -->

<link href="http://v4-alpha.getbootstrap.com/dist/css/bootstrap.min.css"

rel="stylesheet">

<!-- Custom styles for this template -->

<link href=

"http://v4-alpha.getbootstrap.com/examples/dashboard/dashboard.css"

rel="stylesheet">

</head>

<body>

<nav class="navbar navbar-dark navbar-fixed-top bg-inverse">

<button type="button" class="navbar-toggler hidden-sm-up"

data-toggle="collapse" data-target="#navbar"

aria-expanded="false" aria-controls="navbar">

Toggle navigation

</button>

Rango

<div id="navbar">

<nav class="nav navbar-nav pull-xs-left">

Home

About

Search

{% if user.is_authenticated %}

www.tangowithdjango.com

Bootstrapping Rango 145

<a class="nav-item nav-link"

href="{% url 'add_category' %}">

Add a New Category

<a class="nav-item nav-link"

href="{% url 'auth_logout' %}?next=/rango/">Logout

{% else %}

<a class="nav-item nav-link"

href="{% url 'registration_register' %}">Register Here

<a class="nav-item nav-link"

href="{% url 'auth_login' %}">Login

{% endif %}

</nav>

</div>

</nav>

<div class="container-fluid">

<div class="row">

<div class="col-sm-3 col-md-2 sidebar">

{% block sidebar_block %}

{% get_category_list category %}

{% endblock %}

</div>

<div class="col-sm-9 col-sm-offset-3 col-md-10 col-md-offset-2 main">

{% block body_block %}{% endblock %}

</div>

</div>

</div>

<!-- Bootstrap core JavaScript

== -->

<!-- Placed at the end of the document so the pages load faster -->

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js">

</script>

<script

src="http://v4-alpha.getbootstrap.com/dist/js/bootstrap.min.js">

</script>

<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->

<script

src=

"http://v4-alpha.getbootstrap.com/assets/js/ie10-viewport-bug-workaround.j\

s">

</script>

</body>

www.tangowithdjango.com

Bootstrapping Rango 146

</html>

Once you have the new template, downloaded the Rango Favicon and saved it to static/images/.

If you take a close look at the modified Dashboard HTML source, you’ll notice it has a lot of
structure in it created by a series of <div> tags. Essentially the page is broken into two parts - the top
navigation bar which is contained by <nav> tags, and the main content pane denoted by the <div
class="container-fluid"> tag. Within the main content pane, there are two <div>s, one for the
sidebar and the other for the main content, where we have placed the code for the sidebar_block
and body_block, respectively.

In this new template, we have assumed that you have completed the chapters on User Authentication
and used the Django Regisration Redux Package. If not you will need to update the template and
remove/modify the references to those links in the navigation bar i.e. in the <nav> tags.

Also of note is that the HTML template makes references to external websites to request the required
css and js files. So you will need to be connected to the internet for the style to be loaded when
you run the application.

Working Offline?
Rather than including external references to the css and js files, you could download all
the associated files and store them in your static folder. If you do this, simply update the
base template to reference the static files stored locally.

12.2 Quick Style Change

To give Rango a much needed facelift, we can replace the content of the existing base.htmlwith the
HTML template code in base_bootstrap.html. You might want to first comment out the existing
code in base.html and then copy in the base_bootstrap.html code.

Now reload your application. Pretty nice!

You should notice that your application looks about a hundred times better already. Below we have
some screen shots of the about page showing the before and after.

Flip through the different pages. Since they all inherit from base, they will all be looking pretty
good, but not perfect! In the remainder of this chapter, we will go through a number of changes to
the templates and use various Bootstrap classes to improve the look and feel of Rango.

www.tangowithdjango.com

https://github.com/leifos/tango_with_django_19/blob/master/code/tango_with_django_project/static/images/favicon.ico

Bootstrapping Rango 147

A screenshot of the About page without styling.

www.tangowithdjango.com

Bootstrapping Rango 148

A screenshot of the About page with Bootstrap Styling applied.

The Index Page

For the index page it would be nice to show the top categories and top pages in two separate columns.
Looking at the Bootstrap examples, we can see that in the Narrow Jumbotron they have an example
with two columns. If you inspect the source, you can see the following HTML that is responsible for
the columns.

<div class="row marketing">

<div class="col-lg-6">

<h4>Subheading</h4>

<p>Donec id elit non mi porta gravida at eget metus.

Maecenas faucibus mollis interdum.</p>

<h4>Subheading</h4>

</div>

<div class="col-lg-6">

<h4>Subheading</h4>

www.tangowithdjango.com

http://v4-alpha.getbootstrap.com/examples/narrow-jumbotron/

Bootstrapping Rango 149

<p>Donec id elit non mi porta gravida at eget metus.

Maecenas faucibus mollis interdum.</p>

</div>

</div>

Inside the <div class="row marketing">, we can see that it contains two <div>’s with classes col-
lg-6. Bootstrap is based on a grid layout, where each container is conceptually broken up into 12
units. The col-lg-6 class denotes a column that is of size 6, i.e. half the size of its container, <div
class="row marketing">.

Given this example, we can create columns in index.html by updating the template as follows.

{% extends 'rango/base.html' %}

{% load staticfiles %}

{% block title_block %}

Index

{% endblock %}

{% block body_block %}

<div class="jumbotron">

<h1 class="display-3">Rango says...</h1>

{% if user.is_authenticated %}

<h1>hey there {{ user.username }}!</h1>

{% else %}

<h1>hey there partner! </h1>

{% endif %}

</div>

<div class="row marketing">

<div class="col-lg-6">

<h4>Most Liked Categories</h4>

<p>

{% if categories %}

{% for category in categories %}

{{ category.name }}

{% endfor %}

{% else %}

There are no categories present.

{% endif %}

</p>

</div>

<div class="col-lg-6">

www.tangowithdjango.com

http://v4-alpha.getbootstrap.com/layout/grid/

Bootstrapping Rango 150

<h4>Most Viewed Pages</h4>

<p>

{% if pages %}

{% for page in pages %}

{{ page.title }}

{% endfor %}

{% else %}

There are no categories present.

{% endif %}

</p>

</div>

</div>

{% endblock %}

We have also used the jumbotron class to make the heading in the page more evident by wrapping
the title in a <div class="jumbotron">. Reload the page - it should look a lot better now, but the
way the list items are presented is pretty horrible.

Let’s use the list group styles provided by Bootstrap to improve how they look. We can do this quite
easily by changing the elements to <ul class="list-group"> and the elements to <li

class="list-group-item">. Reload the page, any better?

www.tangowithdjango.com

http://v4-alpha.getbootstrap.com/components/list-group/

Bootstrapping Rango 151

A screenshot of the Index page with a Jumbotron and Columns.

The Login Page

Now let’s turn our attention to the login page. On the Bootstrap website you can see they have
already made a nice login form. If you take a look at the source, you’ll notice that there are a number
of classes that we need to include to stylise the basic login form. Update the body_block in the
login.html template as follows:

{% block body_block %}

<link href="http://v4-alpha.getbootstrap.com/examples/signin/signin.css"

rel="stylesheet">

<div class="jumbotron">

<h1 class="display-3">Login</h1>

</div>

<form class="form-signin" role="form" method="post" action=".">

{% csrf_token %}

<h2 class="form-signin-heading">Please sign in</h2>

<label for="inputUsername" class="sr-only">Username</label>

<input type="text" name="username" id="id_username" class="form-control"

www.tangowithdjango.com

http://v4-alpha.getbootstrap.com/examples/signin/

Bootstrapping Rango 152

placeholder="Username" required autofocus>

<label for="inputPassword" class="sr-only">Password</label>

<input type="password" name="password" id="id_password" class="form-control"

placeholder="Password" required>

<button class="btn btn-lg btn-primary btn-block" type="submit"

value="Submit" />Sign in</button>

</form>

{% endblock %}

Besides adding in a link to the bootstrap signin.css, and a series of changes to the classes
associated with elements, we have removed the code that automatically generates the login form,
i.e. form.as_p. Instead, we took the elements, and importantly the id of the elements generated and
associated them with the elements in this bootstrapped form. To find out what these ids were, we
ran Rango, navigated to the page, and then inspected the source to see what HTML was produced
by the form.as_p template tag.

In the button, we have set the class to btn and btn-primary. If you check out the Bootstrap section
on buttons you can see there are lots of different colours, sizes and styles that can be assigned to
buttons.

A screenshot of the login page with customised Bootstrap Styling.

www.tangowithdjango.com

http://v4-alpha.getbootstrap.com/components/buttons/
http://v4-alpha.getbootstrap.com/components/buttons/

Bootstrapping Rango 153

Other Form-based Templates

You can apply similar changes to add_cagegory.html and add_page.html templates. For the add_-
page.html template, we can set it up as follows.

{% extends "rango/base.html" %}

{% block title %}Add Page{% endblock %}

{% block body_block %}

{% if category %}

<form role="form" id="page_form" method="post"

action="/rango/category/{{category.slug}}/add_page/">

<h2 class="form-signin-heading"> Add a Page to

{{ category.name }}</h2>

{% csrf_token %}

{% for hidden in form.hidden_fields %}

{{ hidden }}

{% endfor %}

{% for field in form.visible_fields %}

{{ field.errors }}

{{ field.help_text }}

{{ field }}

{% endfor %}

<button class="btn btn-primary"

type="submit" name="submit">

Add Page

</button>

</form>

{% else %}

<p>This is category does not exist.</p>

{% endif %}

{% endblock %}

Exercise

• Create a similar template for the Add Category page called add_category.html.

www.tangowithdjango.com

Bootstrapping Rango 154

The Registration Template

For the registration_form.html, we can update the form as follows:

{% extends "rango/base.html" %}

{% block body_block %}

<h2 class="form-signin-heading">Sign Up Here</h2>

<form role="form" method="post" action=".">

{% csrf_token %}

<div class="form-group" >

<p class="required"><label class="required" for="id_username">

Username:</label>

<input class="form-control" id="id_username" maxlength="30"

name="username" type="text" />

Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.

</p>

<p class="required"><label class="required" for="id_email">

E-mail:</label>

<input class="form-control" id="id_email" name="email"

type="email" />

</p>

<p class="required"><label class="required" for="id_password1">

Password:</label>

<input class="form-control" id="id_password1" name="password1"

type="password" />

</p>

<p class="required">

<label class="required" for="id_password2">

Password confirmation:</label>

<input class="form-control" id="id_password2" name="password2"

type="password" />

Enter the same password as before, for verification.

</p>

</div>

<button type="submit" class="btn btn-default">Submit</button>

</form>

{% endblock %}

www.tangowithdjango.com

Bootstrapping Rango 155

Again we have manually transformed the form created by the {{ form.as_p }} template tag, and
added the various bootstrap classes.

Bootstrap, HTML and Django Kludge
This is not the best solution - we have kind of kludged it together. It would be much nicer
and cleaner if we could instruct Django when building the HTML for the form to insert
the appropriate classes.

12.3 Using Django-Bootstrap-Toolkit

An alternative solution would be to use something like the django-bootstrap-toolkit. To install
the django-bootstrap-toolkit, run:

pip install django-bootstrap-toolkit

Add, bootstrap_toolkit to the INSTALLED_APPS tuple in settings.py.

To use the toolkit within our templates, we need to first load the toolkit using the load template tag,
{% load bootstrap_toolkit %}, and then call the function that updates the generated HTML, i.e.
{{ form|as_bootstrap }}. Updating the category.html template, we arrive at the following.

{% extends "rango/base.html" %}

{% load bootstrap_toolkit %}

{% block title %}Add Category{% endblock %}

{% block body_block %}

<form id="category_form" method="post"

action="{% url 'add_category' %}"\>

<h2 class="form-signin-heading"\>Add a Category</h2>

{% csrf_token %}

{{ form|as_bootstrap }}

<button class="btn btn-primary" type="submit"

name="submit"\>Create Category</button>

</form>

{% endblock %}

This solution is much cleaner, and automated. However, it does not render as nicely as the first
solution. It therefore needs some tweaking to customise it as required, but we’ll let you figure out
what needs to be done.

www.tangowithdjango.com

https://github.com/dyve/django-bootstrap-toolkit

Bootstrapping Rango 156

Next Steps

In this chapter we have described how to quickly style your Django application using the Bootstrap
toolkit. Bootstrap is highly extensible and it is relatively easy to change themes - check out the
StartBootstrap Website for a whole series of free themes. Alternatively, you might want to use a
different CSS toolkit like: Zurb, Titon, Pure, GroundWorkd or BaseCSS. Now that you have an idea
of how to hack the templates and set them up to use a responsive CSS toolkit, we can now go back
and focus on finishing off the extra functionality that will really pull the application together.

A screenshot of the Registration page with customised Bootstrap Styling.

Another Style Exercise
While this tutorial uses Bootstrap, an additional, and optional exercise, would be to style
Rango using one of the other responsive CSS toolkits. If you do create your own style, let
us know and we can link to it to show others how you have improved Rango’s styling!

www.tangowithdjango.com

http://startbootstrap.com/
http://zurb.com/
http://titon.io/en/toolkit
http://purecss.io/
https://groundworkcss.github.io/groundwork/
http://www.basscss.com/

13. Bing Search
Now that our Rango application is looking good and most of the core functionality has been
implemented, we can move onto some of the more advanced functionality. In this chapter, we will
connect Rango up to Bing’s Search API so that users can also search for pages, rather than just
browse categories. Before we can do so, we need to set up an account to use Bing’s Search API and
write a wrapper to call Bing’s Web search functionality.

13.1 The Bing Search API

The Bing Search API provides you with the ability to embed search results from the Bing search
engine within your own applications. Through a straightforward interface, you can request results
from Bing’s servers to be returned in either XML or JSON. The data returned can then be interpreted
by a XML or JSON parser, with the results then rendered as part of a template within your
application.

Although the Bing API can handle requests for different kinds of content, we’ll be focusing on web
search only for this tutorial - as well as handling JSON responses. To use the Bing Search API, you
will need to sign up for an API key. The key currently provides subscribers with access to 5000
queries per month, which should be more than enough for our purposes.

Application Programming Interface (API)

An (Application Programming Interface)[http://en.wikipedia.org/wiki/Application_pro-
gramming_interface>] specifies how software components should interact with one an-
other. In the context of web applications, an API is considered as a set of HTTP requests
along with a definition of the structures of response messages that each request can return.
Any meaningful service that can be offered over the Internet can have its own API - we
aren’t limited to web search. For more information on web APIs, (Luis Rei provides an
excellent tutorial on APIs)[http://blog.luisrei.com/articles/rest.html].

Registering for a Bing API Key

To register for a Bing API key, you must first register for a free Microsoft account. The account
provides you with access to a wide range of Microsoft services. If you already have a Hotmail
account, you already have one! Otherwise, you can go online and create a free account with
Microsoft at https://account.windowsazure.com.

https://account.windowsazure.com/

Bing Search 158

When your account has been created, go to the Windows Azure Marketplace Bing Search API page
and login.

On the right hand side of the page you should see a list of transactions per month. At the bottom
of the list is 5,000 Transactions/month. Click the sign up button to the right - subscribe for the free
service.

The Bing Search API services - sign up for the 5000 transactions/month for free.

Once you’ve signed up, click theData link at the top of the page. From there, you should be presented
with a list of data sources available through the Windows Azure Marketplace. At the top of the list
should be Bing Search API - it should also say that you are subscribed to the data source. Click the
use link associated with the Bing Search API located on the right of the page.

www.tangowithdjango.com

https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44

Bing Search 159

The Account Information Page. In this screenshot, the Primary Account Key is deliberately obscured. You should
make sure you keep your key secret, too!

This page allows you to try out the Bing Search API by filling out the boxes to the left. For example,
the Query box allows you to specify a query to send to the API. Ensure that at the bottom of the
screen you select Web for web search results only. Note the URL provided in the blue box at the
top of the page changes as you alter the settings within the webpage. Take a note of the Web search
URL. We’ll be using part of this URL within our code later on. The following example is a URL that
we’d need to construct in order to perform a web search using the query rango.

https://api.datamarket.azure.com/Bing/Search/v1/Web?Query=%27rango%27

Assuming this all works take a copy of your API key. We will need this when we make requests as
part of the authentication process. To obtain your key, locate the text Primary Account Key at the
top of the page and click the Show link next to it. Your key will then be shown. We’ll be using it
later, so take a note of it - and keep it safe! The Bing API Service Explorer keeps a tab of how many
queries you have left of your monthly quota. So if someone obtains your key, they’ll be able to use
your quota.

www.tangowithdjango.com

Bing Search 160

13.2 Adding Search Functionality

Below we have provided the code that we can use to issue queries to the Bing search service. Create
a file called rango/bing_search.py and import the following code. You’ll also need to take a copy
of your Bing Search API key - we’ll show you what to do with that shortly.

Python 2 and 3 import Differences
In Python 3 they refactored the urllib package, so the way that we connect and work with
external web resources has changed from Python 2.7+. Below we have two versions of the
code, one for Python 2.7+ and one for Python 3+. Make sure you use the correct one.

Python 2 Version

1 import json

2 import urllib, urllib2 # Py2.7.x

3

4 # Add your Microsoft Account Key to a file called bing.key

5

6 def read_bing_key():

7 """

8 Reads the BING API key from a file called 'bing.key'.

9 returns: a string which is either None, i.e. no key found, or with a key.

10 Remember: put bing.key in your .gitignore file to avoid committing it!

11 """

12 # See Python Anti-Patterns - it's an awesome resource!

13 # Here we are using "with" when opening documents.

14 # http://docs.quantifiedcode.com/python-anti-patterns/maintainability/

15 bing_api_key = None

16

17 try:

18 with open('bing.key','r') as f:

19 bing_api_key = f.readline()

20 except:

21 raise IOError('bing.key file not found')

22

23 return bing_api_key

24

25 def run_query(search_terms):

26 """

27 Given a string containing search terms (query),

www.tangowithdjango.com

http://stackoverflow.com/a/2792652

Bing Search 161

28 returns a list of results from the Bing search engine.

29 """

30 bing_api_key = read_bing_key()

31

32 if not bing_api_key:

33 raise KeyError("Bing Key Not Found")

34

35 # Specify the base url and the service (Bing Search API 2.0)

36 root_url = 'https://api.datamarket.azure.com/Bing/Search/'

37 service = 'Web'

38

39 # Specify how many results we wish to be returned per page.

40 # Offset specifies where in the results list to start from.

41 # With results_per_page = 10 and offset = 11, this would start from page 2.

42 results_per_page = 10

43 offset = 0

44

45 # Wrap quotes around our query terms as required by the Bing API.

46 # The query we will then use is stored within variable query.

47 query = "'{0}'".format(search_terms)

48

49 # Turn the query into an HTML encoded string, using urllib.

50 # Use the line relevant to your version of Python.

51 query = urllib.quote(query) # Py2.7.x

52

53 # Construct the latter part of our request's URL.

54 # Sets the format of the response to JSON and sets other properties.

55 search_url = "{0}{1}?$format=json&$top={2}&$skip={3}&Query={4}".format(

56 root_url,

57 service,

58 results_per_page,

59 offset,

60 query)

61

62 # Setup authentication with the Bing servers.

63 # The username MUST be a blank string, and put in your API key!

64 username = ''

65

66 # Setup a password manager to help authenticate our request.

67 # Watch out for the differences between Python 2 and 3!

68 password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() # Py2.7.x

69

www.tangowithdjango.com

Bing Search 162

70 # The below line will work for both Python versions.

71 password_mgr.add_password(None, search_url, username, bing_api_key)

72

73 # Create our results list which we'll populate.

74 results = []

75

76 try:

77 # Prepare for connecting to Bing's servers.

78 # Python 2.7.x import (three lines)

79 handler = urllib2.HTTPBasicAuthHandler(password_mgr) # Py2.7.x

80 opener = urllib2.build_opener(handler) # Py2.7.x

81 urllib2.install_opener(opener) # Py2.7.x

82

83 # Connect to the server and read the response generated.

84 # Once again, watch for differences between Python 2.7.x and 3.

85 response = urllib2.urlopen(search_url).read() # Py2.7.x

86

87 # Convert the string response to a Python dictionary object.

88 json_response = json.loads(response)

89

90 # Loop through each page returned, populating out results list.

91 for result in json_response['d']['results']:

92 results.append({'title': result['Title'],

93 'link': result['Url'],

94 'summary': result['Description']})

95 except:

96 print("Error when querying the Bing API")

97

98 # Return the list of results to the calling function.

99 return results

www.tangowithdjango.com

Bing Search 163

Python 3 Version

1 import json

2 import urllib # Py3

3

4 # Add your Microsoft Account Key to a file called bing.key

5

6 def read_bing_key():

7 """

8 Reads the BING API key from a file called 'bing.key'.

9 returns: a string which is either None, i.e. no key found, or with a key.

10 Remember: put bing.key in your .gitignore file to avoid committing it!

11 """

12 # See Python Anti-Patterns - it's an awesome resource!

13 # Here we are using "with" when opening documents.

14 # http://docs.quantifiedcode.com/python-anti-patterns/maintainability/

15 bing_api_key = None

16

17 try:

18 with open('bing.key','r') as f:

19 bing_api_key = f.readline()

20 except:

21 raise IOError('bing.key file not found')

22

23 return bing_api_key

24

25 def run_query(search_terms):

26 """

27 Given a string containing search terms (query),

28 returns a list of results from the Bing search engine.

29 """

30 bing_api_key = read_bing_key()

31

32 if not bing_api_key:

33 raise KeyError("Bing Key Not Found")

34

35 # Specify the base url and the service (Bing Search API 2.0)

36 root_url = 'https://api.datamarket.azure.com/Bing/Search/'

37 service = 'Web'

38

39 # Specify how many results we wish to be returned per page.

40 # Offset specifies where in the results list to start from.

www.tangowithdjango.com

Bing Search 164

41 # With results_per_page = 10 and offset = 11, this would start from page 2.

42 results_per_page = 10

43 offset = 0

44

45 # Wrap quotes around our query terms as required by the Bing API.

46 # The query we will then use is stored within variable query.

47 query = "'{0}'".format(search_terms)

48

49 # Turn the query into an HTML encoded string, using urllib.

50 # Use the line relevant to your version of Python.

51 query = urllib.parse.quote(query) # Py3

52

53 # Construct the latter part of our request's URL.

54 # Sets the format of the response to JSON and sets other properties.

55 search_url = "{0}{1}?$format=json&$top={2}&$skip={3}&Query={4}".format(

56 root_url,

57 service,

58 results_per_page,

59 offset,

60 query)

61

62 # Setup authentication with the Bing servers.

63 # The username MUST be a blank string, and put in your API key!

64 username = ''

65

66 # Setup a password manager to help authenticate our request.

67 # Watch out for the differences between Python 2 and 3!

68 password_mgr = urllib.request.HTTPPasswordMgrWithDefaultRealm() # Py3

69

70 # The below line will work for both Python versions.

71 password_mgr.add_password(None, search_url, username, bing_api_key)

72

73 # Create our results list which we'll populate.

74 results = []

75

76 try:

77 # Prepare for connecting to Bing's servers.

78 # Python 3 import (three lines)

79 handler = urllib.request.HTTPBasicAuthHandler(password_mgr) # Py3

80 opener = urllib.request.build_opener(handler) # Py3

81 urllib.request.install_opener(opener) # Py3

82

www.tangowithdjango.com

Bing Search 165

83 # Connect to the server and read the response generated.

84 response = urllib.request.urlopen(search_url).read() # Py3

85 response = response.decode('utf-8') # Py3

86

87 # Convert the string response to a Python dictionary object.

88 json_response = json.loads(response)

89

90 # Loop through each page returned, populating out results list.

91 for result in json_response['d']['results']:

92 results.append({'title': result['Title'],

93 'link': result['Url'],

94 'summary': result['Description']})

95 except:

96 print("Error when querying the Bing API")

97

98 # Return the list of results to the calling function.

99 return results

In the module(s) above, we have implemented two functions: one to retrieve your Bing API key from
a local file, and another to issue a query to the Bing search engine. Below, we discuss how both of
the functions work.

read_bing_key() - Reading the Bing Key

The read_bing_key() function reads in your key from a file called bing.key, located in your Django
project’s root directory (i.e. <workspace>/tango_with_django/). We have created this function
because if you are putting your code into a public repository on GitHub for example, you should
take some precautions to avoid sharing your API Key publicly.

From the Azure website, take a copy of your Account key and save it into <workspace>/tango_-

with_django/bing.key. The key should be the only contents of the file - nothing else should exist
within it. This file should be kept from being committed to your GitHub repository. To make sure
that you do not accidentally commit it, update your repository’s .gitignore file to exclude any files
with a .key extension, by adding the line *.key. This way, your key file will only be stored locally
and you will not end up with someone using your query quota.

Keys and Rings
Keep them secret, keep them safe!

www.tangowithdjango.com

Bing Search 166

run_query() - Executing the Query

The run_query() function takes a query as a string, and returns the top ten results from Bing in a
list that contains a dictionary of the result items (including the title, a link, and a summary). If you
are interested, the inline commentary in the code snippet above describes how the request is created
and then issued to the Bing API - check it out to further your understanding.

To summarise though, the logic of the run_query() function can be broadly split into six main tasks.

• First, the function prepares for connecting to Bing by preparing the URL that we’ll be
requesting.

• The function then prepares authentication, making use of your Bing API key. This is obtained
by calling read_bing_key(), which in turn pulls your Account key from the bing.key file you
created earlier.

• We then connect to the Bing API through the function call urllib2.urlopen() (for Python
2.7.x), or urllib.request.urlopen() (for Python 3). The results from the server are read and
saved as a string.

• This string is then parsed into a Python dictionary object using the json Python package.
• We loop through each of the returned results, populating a results dictionary. For each result,
we take the title of the page, the link or URL and a short summary of each returned result.

• The list of dictionaries is then returned by the function.

Notice that results are passed from Bing’s servers as JSON. This is because we explicitly specify to
use JSON in our initial request - check out the format key/value pair in the search_url variable that
we define.

Also, note that if an error occurs when attempting to connect to Bing’s servers, the error is printed
to the terminal via the print statement within the except block.

Bing it on!
There are many different parameters that the Bing Search API can handle which we don’t
cover here. If you want to know more about the API check out the Bing Search API
Migration Guide and FAQ.

Exercises
Extend your bing_search.py module so that it can be run independently, i.e. running
python bing_search.py from your terminal or Command Prompt. Specifically, you should
implement functionality that:

• prompts the the user to enter a query, i.e. use raw_input(); and
• issues the query via run_query(), and prints the results.

www.tangowithdjango.com

http://datamarket.azure.com/dataset/bing/search
http://datamarket.azure.com/dataset/bing/search

Bing Search 167

Hint
Add the following code, so that when you run python bing_search.py it calls the main()
function:

def main():

#insert your code here

if __name__ == '__main__':

main()

When you run themodule explicitly via python bing_search.py, the bing_searchmodule
is treated as the __main__module, and thus triggers main(). However, when the module is
imported by another module, then __name__ will not equal __main__, and thus the main()
function not be called. This way you can import it with your application without having
to call main().

13.3 Putting Search into Rango

Now that we have successfully implemented the search functionality module, we need to integrate
it into our Rango app. There are two main steps that we need to complete for this to work.

• We must first create a search.html template that extends from our base.html template. The
search.html template will include a HTML <form> to capture the user’s query as well as
template code to present any results.

• We then create a view to handle the rendering of the search.html template for us, as well as
calling the run_query() function we defined above.

Adding a Search Template

Let’s first create a template called, rango/search.html. Add the following HTML markup, Django
template code, and Bootstrap classes.

www.tangowithdjango.com

Bing Search 168

1 {% extends 'rango/base.html' %}

2 {% load staticfiles %}

3

4 {% block title %} Search {% endblock %}

5

6 {% block body_block %}

7 <div>

8 <h1>Search with Rango</h1>

9

10 <form class="form-inline" id="user_form"

11 method="post" action="{% url 'search' %}">

12 {% csrf_token %}

13 <div class="form-group">

14 <input class="form-control" type="text" size="50"

15 name="query" value="" id="query" />

16 </div>

17 <button class="btn btn-primary" type="submit" name="submit"

18 value="Search">Search</button>

19 </form>

20

21 <div>

22 {% if result_list %}

23 <h3>Results</h3>

24 <!-- Display search results in an ordered list -->

25 <div class="list-group">

26 {% for result in result_list %}

27 <div class="list-group-item">

28 <h4 class="list-group-item-heading">

29 {{ result.title }}

30 </h4>

31 <p class="list-group-item-text">{{ result.summary }}</p>

32 </div>

33 {% endfor %}

34 </div>

35 {% endif %}

36 </div>

37 </div>

38 {% endblock %}

The template code above performs two key tasks.

• In all scenarios, the template presents a search box and a search buttons within a HTML
<form> for users to enter and submit their search queries.

www.tangowithdjango.com

Bing Search 169

• If a results_list object is passed to the template’s context when being rendered, the template
then iterates through the object displaying the results contained within.

To style the HTML, we have made use of Bootstrap panels, list groups, and inline forms.

In the view code, in the next subsection, we will only pass through the results to the template, when
the user issues a query. Initially, there will be not results to show.

Adding the View

With our search template added, we can then add the view that prompts the rendering of our
template. Add the following search() view to Rango’s views.py module.

def search(request):

result_list = []

if request.method == 'POST':

query = request.POST['query'].strip()

if query:

Run our Bing function to get the results list!

result_list = run_query(query)

return render(request, 'rango/search.html', {'result_list': result_list})

By now, the code should be pretty self explanatory to you. The only major addition is the calling of
the run_query() function we defined earlier in this chapter. To call it, we are required to also import
the bing_search.py module, too. Ensure that before you run the script that you add the following
import statement at the top of the views.py module.

from rango.bing_search import run_query

You’ll also need to ensure you do the following, too.

• Add a mapping between your search() view and the /rango/search/ URL calling it
name='search' by adding in url(r'search/$', views.search, name='search'), to ran-

go/urls.py.
• Also, update the base.html navigation bar to include a link to the search page. Remember to
use the url template tag to reference the link.

• You will need a copy of the bing.key in your project’s root directory (<workspace>/tango_-
with_django_project, alongside manage.py).

www.tangowithdjango.com

http://getbootstrap.com/components/#panels
http://getbootstrap.com/components/#list-group
http://getbootstrap.com/css/#forms-inline

Bing Search 170

Once you have put in the URL mapping and added a link to the search page, you should now be able
issue queries to the Bing Search API and have the results shown within the Rango app (as shown in
the figure below).

Searching for “Python for Noobs”.

Additional Exercise
You may notice that when you issue a query, the query disappears when the results are
shown. This is not very user friendly. Update the view and template so that user’s query is
displayed within the search box.

Within the view, you will need to put the query into the context dictionary. Within the
template, you will need to show the query text in the search box.

www.tangowithdjango.com

14. Making Rango Tango! Exercises
So far we have been adding in different pieces of functionality to Rango. We’ve been building up the
application in this manner to get you familiar with the Django Framework, and to learn about how
to construct the various parts of an application. However, at the moment, Rango is not very cohesive
or interactive. In this chapter, we challenge you to improve the application and its user experience
by bringing together some of the functionality that we have already implemented along with some
other features.

To make Rango more coherent, integrated and interactive, it would be nice to add the following
functionality.

• Track the clickthroughs of Categories and Pages, i.e.:
– count the number of times a category is viewed
– count the number of times a page is viewed via Rango, and
– collect likes for categories (see Django and Ajax Chapter).

• Integrate the browsing and searching within categories, i.e.:
– instead of having a disconnected search page, let users search for pages on each specific
category page, and

– let users filter the set of categories shown in the side bar (see Django and Ajax Chapter).
• Provide services for Registered Users, i.e.:

– Assuming you have switched the django-registration-redux, we need to setup the
registration form to collect the additional information (i.e. website, profile picture)

– let users view their profile
– let users edit their profile, and
– let users see the list of users and their profiles.

Note
We won’t be working through all of these tasks right now. Some will be taken care of in
the Django and Ajax Chapter, while others will be left to you to complete as additional
exercises.

Before we start to add this additional functionality we will make a todo list to plan our workflow
for each task. Breaking tasks down into sub-tasks will greatly simplify the implementation so that
we are attacking each one with a clear plan. In this chapter, we will provide you with the workflow
for a number of the above tasks. From what you have learnt so far, you should be able to fill in the
gaps and implement most of it on your own (except those requiring AJAX). In the following chapter,
we have included hints, tips and code snippets elaborating on how to implement these features. Of
course, if you get really stuck, you can always check out our implementation on GitHub.

Making Rango Tango! Exercises 172

14.1 Track Page Clickthroughs

Currently, Rango provides a direct link to external pages. This is not very good if you want to track
the number of times each page is clicked and viewed. To count the number of times a page is viewed
via Rango you will need to perform the following steps.

• Create a new view called track_url(), and map it to URL /rango/goto/ and name it
'name=goto'.

• The track_url() viewwill examine the HTTP GET request parameters and pull out the page_-
id. The HTTP GET requests will look something like /rango/goto/?page_id=1.

– In the view, select/get the page with page_id and then increment the associated views

field, and save() it.
– Have the view redirect the user to the specified URL using Django’s redirect method.
Remember to include the import, from django.shortcuts import redirect

– If no parameters are in the HTTP GET request for page_id, or the parameters do not
return a Page object, redirect the user to Rango’s homepage. Use the reverse method
from django.core.urlresolvers to get the URL string and then redirect. If you are
using Django 1.10, then you can import the reverse method from django.shortcuts.

– See Django Shortcut Functions for more on redirect and reverse.
• Update the category.html so that it uses /rango/goto/?page_id=XXX.

– Remember to use the url template tag instead of using the direct URL i.e.

GET Parameters Hint
If you’re unsure of how to retrieve the page_id querystring from the HTTP GET request,
the following code sample should help you.

page_id = None

if request.method == 'GET':

if 'page_id' in request.GET:

page_id = request.GET['page_id']

Always check the request method is of type GET first, then you can access the dictionary
request.GET which contains values passed as part of the request. If page_id exists within
the dictionary, you can pull the required value out with request.GET['page_id'].

You could also do this without using a querystring, but through the URL instead, i.e.
/rango/goto/<page_id>/. In which case you would need to create a urlpattern that pulls
out the page_id, i.e. r'goto/(?P<page_id>\d+)/$'.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/http/shortcuts/

Making Rango Tango! Exercises 173

14.2 Searching Within a Category Page

Rango aims to provide users with a helpful directory of useful web pages. At the moment, the search
functionality is essentially independent of the categories. It would be nicer to have search integrated
within the categories. We will assume that a user will first browse through the category of interest.
If they can’t find a relevant page, they can then search. If they find a page that is relevant, then they
can add it to the category. Let’s focus on the first problem, of putting search on the category page.
To do this, perform the following steps:

• Remove the generic Search link from the menu bar, i.e. we are decommissioning the global
search functionality.

• Take the search form and results template markup from search.html and place it into
category.html.

• Update the search form so that action refers back to the category page, i.e.:

<form class="form-inline" id="user_form"

method="post" action="{% url 'show_category' category.slug %}">

• Update the category view to handle a HTTP POST request. The view must then include any
search results in the context dictionary for the template to render.

• Also, lets make it so that only authenticated users can search. So to restrict access within the
category.html template use:

{% if user.authenticated %}

<!-- Insert search code here -->

{% endif %}

14.3 Create and View Profiles

If you have swapped over to the django-registration-redux package, then you’ll have to collect
the UserProfile data. To do this, instead of redirecting the user to the Rango index page, you will
need to redirect them to a new form, to collect the user’s profile picture and URL details. To add the
UserProfile registration functionality, you need to:

• create a profile_registration.html which will display the UserProfileForm;
• create a UserProfileForm ModelForm class to handle the new form;
• create a register_profile() view to capture the profile details;
• map the view to a URL, i.e. rango/register_profile/; and

www.tangowithdjango.com

Making Rango Tango! Exercises 174

• in the MyRegistrationView, update the get_success_url() to point to rango/add_profile/.

Another useful feature is to let users inspect and edit their own profile. Undertake the following
steps to add this functionality.

• First, create a template called profile.html. In this template, add in the fields associated with
the user profile and the user (i.e. username, email, website and picture).

• Create a view called profile(). This view will obtain the data required to render the user
profile template.

• Map the URL /rango/profile/ to your new profile() view.
• In the base template add a link called Profile into the menu bar, preferably with other user-
related links. This should only be available to users who are logged in (i.e. {% if user.is_-

authenticated %}).

To let users browse through user profiles, you can also create a users page that lists all the users. If
you click on a user page, then you can see their profile. However, you must make sure that a user is
only able to edit their profile!

Referencing Uploaded Content in Templates
If you have successfully completed all of the Templates and Media chapter, your Django
setup should be ready to deal with the uploading and serving of user media files. You
should be able to reference the MEDIA_URL URL (defined in settings.py) in your templates
through use of the {{ MEDIA_URL }} tag, provided by themedia template context processor,
e.g. .

In the next chapter, we provide a series of hints and tips to help you complete the aforementioned
features.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/templates/api/#django-template-context-processors-media

15. Making Rango Tango! Hints
Hopefully, you will have been able to complete the exercises given the workflows we provided. If
not, or if you need a little help, have a look at the potential solutions we have provided below, and
use them within your version of Rango.

Got a better solution?
The solutions provided in this chapter are only one way to solve each problem. They are
based on what we have learnt so far. However, if you implement them differently, feel free
to share your solutions with us - and tweet links to @tangowithdjango for others to see.

15.1 Track Page Clickthroughs

Currently, Rango provides a direct link to external pages. This is not very good if you want to track
the number of times each page is clicked and viewed. To count the number of times a page is viewed
via Rango, you’ll need to perform the following steps.

Creating a URL Tracking View

Create a new view called track_url() in /rango/views.py which takes a parameterised HTTP
GET request (i.e. rango/goto/?page_id=1) and updates the number of views for the page. The view
should then redirect to the actual URL.

from django.shortcuts import redirect

def track_url(request):

page_id = None

url = '/rango/'

if request.method == 'GET':

if 'page_id' in request.GET:

page_id = request.GET['page_id']

try:

page = Page.objects.get(id=page_id)

page.views = page.views + 1

page.save()

Making Rango Tango! Hints 176

url = page.url

except:

pass

return redirect(url)

Be sure that you import the redirect() function to views.py if it isn’t included already!

from django.shortcuts import redirect

Mapping URL

In /rango/urls.py add the following code to the urlpatterns tuple.

url(r'^goto/$', views.track_url, name='goto'),

Updating the Category Template

Update the category.html template so that it uses rango/goto/?page_id=XXX instead of providing
the direct URL for users to click.

{% for page in pages %}

{{ page.title }}

{% if page.views > 1 %}

({{ page.views }} views)

{% elif page.views == 1 %}

({{ page.views }} view)

{% endif %}

{% endfor %}

Here you can see that in the template we have added some control statements to display view, views
or nothing depending on the value of page.views.

Updating Category View

Since we are tracking the number of clickthroughs you can now update the category() view so that
you order the pages by the number of views:

www.tangowithdjango.com

Making Rango Tango! Hints 177

pages = Page.objects.filter(category=category).order_by('-views')

Now, confirm it all works, by clicking on links, and then going back to the category page. Don’t
forget to refresh or click to another category to see the updated page.

15.2 Searching Within a Category Page

Rango aims to provide users with a helpful directory of page links. At the moment, the search
functionality is essentially independent of the categories. It would be nicer however to have search
integrated into category browsing. Let’s assume that a user will first browse their category of interest
first. If they can’t find the page that they want, they can then search for it. If they find a page that
is suitable, then they can add it to the category that they are in. Let’s tackle the first part of this
description here.

We first need to remove the global search functionality and only let users search within a category.
This will mean that we essentially decommission the current search page and search view. After
this, we’ll need to perform the following.

Decommissioning Generic Search

Remove the generic Search link from the menu bar by editing the base.html template. You can also
remove or comment out the URL mapping in rango/urls.py.

Creating a Search Form Template

After the categories add in a new div at the bottom of the template in category.html, and add in
the search form. This is very similar to the template code in the search.html, but we have updated
the action to point to the show_category page. We also pass through a variable called query, so that
the user can see what query has been issued.

<form class="form-inline" id="user_form"

method="post" action="{% url 'show_category' category.slug %}">

{% csrf_token %}

<div class="form-group">

<input class="form-control" type="text" size="50"

name="query" value="{{ query }}" id="query" />

</div>

<button class="btn btn-primary" type="submit" name="submit"

value="Search">Search</button>

</form>

After the search form, we need to provide a space where the results are rendered. Again, this code
is similar to the template code in search.html.

www.tangowithdjango.com

Making Rango Tango! Hints 178

<div>

{% if result_list %}

<h3>Results</h3>

<!-- Display search results in an ordered list -->

<div class="list-group">

{% for result in result_list %}

<div class="list-group-item">

<h4 class="list-group-item-heading">

{{ result.title }}

</h4>

<p class="list-group-item-text">{{ result.summary }}</p>

</div>

{% endfor %}

</div>

{% endif %}

</div>

Remember to wrap the search form and search results with {% if user.authenticated %} and {%

endif %}, so that only authenticated users can search. You don’t want random users to be wasting
your Bing Search budget!

Updating the Category View

Update the category view to handle a HTTP POST request (i.e. when the user submits a search) and
inject the results list into the context. The following code demonstrates this new functionality.

def show_category(request, category_name_slug):

Create a context dictionary that we can pass

to the template rendering engine.

context_dict = {}

try:

Can we find a category name slug with the given name?

If we can't, the .get() method raises a DoesNotExist exception.

So the .get() method returns one model instance or raises an exception.

category = Category.objects.get(slug=category_name_slug)

Retrieve all of the associated pages.

Note that filter() returns a list of page objects or an empty list

pages = Page.objects.filter(category=category)

Adds our results list to the template context under name pages.

context_dict['pages'] = pages

We also add the category object from

www.tangowithdjango.com

Making Rango Tango! Hints 179

the database to the context dictionary.

We'll use this in the template to verify that the category exists.

context_dict['category'] = category

We get here if we didn't find the specified category.

Don't do anything -

the template will display the "no category" message for us.

except Category.DoesNotExist:

context_dict['category'] = None

context_dict['pages'] = None

New code added here to handle a POST request

create a default query based on the category name

to be shown in the search box

context_dict['query'] = category.name

result_list = []

if request.method == 'POST':

query = request.POST['query'].strip()

if query:

Run our Bing function to get the results list!

result_list = run_query(query)

context_dict['query'] = query

context_dict['result_list'] = result_list

Go render the response and return it to the client.

return render(request, 'rango/category.html', context_dict)

Notice that the context_dict now includes the result_list and query. If there is no query, we
provide a default query, i.e. the category name. The query box then displays this value.

www.tangowithdjango.com

Making Rango Tango! Hints 180

Rango’s updated category view, complete with Bing search functionality.

15.3 Creating a UserProfile Instance

This section provides a solution for creating Rango UserProfile accounts. Recall that the standard
Django auth User object contains a variety of standard information regarding an individual user,
such as a username and password. We however chose to implement an additional UserProfile
model to store additional information such as a user’s Website and a profile picture. Here, we’ll go
through how you can implement this, using the following steps.

• Create a profile_registration.html that will display the UserProfileForm.
• Create a UserProfileForm ModelForm class to handle the new form.
• Create a register_profile() view to capture the profile details.
• Map the view to a URL, i.e. rango/register_profile/.
• In the MyRegistrationView defined in the Django registration-redux chapter, update the
get_success_url() to point to rango/add_profile/.

The basic flow for a registering user here would be:

• clicking the Register link;
• filling out the initial Django registration-redux form (and thus registering);

www.tangowithdjango.com

Making Rango Tango! Hints 181

• filling out the new UserProfileForm form; and
• completing the registration.

This assumes that a user will be registered with Rango before the profile form is saved.

Creating a Profile Registration Template

First, let’s create a template that’ll provide the necessary markup for displaying an additional
registration form. In this solution, we’re going to keep the Django registration-redux form
separate from our Profile Registration form - just to delineate between the two. If you can think
of a neat way to mix both forms together, why not try it?

Create a template in Rango’s templates directory called profile_registration.html. Within this
new template, add the following markup and Django template code.

{% extends "rango/base.html" %}

{% block title_block %}

Registration - Step 2

{% endblock %}

{% block body_block %}

<h1>Registration - Step 2</h1>

<form method="post" action="." enctype="multipart/form-data">

{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Submit" />

</form>

{% endblock %}

Much like the previous Django registration-redux form that we created previously, this template
inherits from our base.html template, which incorporates the basic layout for our Rango app. We
also create an HTML form inside the body_block block. This will be populated with fields from a
form object that we’ll be passing into the template from the corresponding view (see below).

Don’t Forget multipart/form-data!
When creating your form, don’t forget to include the enctype="multipart/form-data"

attribute in the <form> tag. We need to set this to instruct the Web browser and server
that no character encoding should be used - as we are performing file uploads. If you don’t
include this attribute, the image upload component will not work.

www.tangowithdjango.com

http://stackoverflow.com/questions/4526273/what-does-enctype-multipart-form-data-mean
http://stackoverflow.com/questions/4526273/what-does-enctype-multipart-form-data-mean

Making Rango Tango! Hints 182

Creating the UserProfileForm Class

Looking at Rango’s models.pymodule, you should see a UserProfilemodel that you implemented
previously. We’ve included it below to remind you of what it contains - a reference to a Django
django.contrib.auth.User object, and fields for storing a Website and profile image.

class UserProfile(models.Model):

This line is required. Links UserProfile to a User model instance.

user = models.OneToOneField(User)

The additional attributes we wish to include.

website = models.URLField(blank=True)

picture = models.ImageField(upload_to='profile_images', blank=True)

Override the __unicode__() method to return out something meaningful!

def __str__(self):

return self.user.username

In order to provide the necessary HTML markup on the fly for this model, we need to implement a
Django ModelForm class, based upon our UserProfile model. Looking back to the chapter detailing
Django forms, we can implement a ModelForm for our UserProfile as shown in the example below.
Perhaps unsurprisingly, we call this new class UserProfileForm.

class UserProfileForm(forms.ModelForm):

website = forms.URLField(required=False)

picture = forms.ImageField(required=False)

class Meta:

model = UserProfile

exclude = ('user',)

Note the inclusion of optional (through required=False) website and picture HTML form fields
- and the nested Meta class that associates the UserProfileForm with the UserProfile model. The
exclude attribute instructs the Django form machinery to not produce a form field for the user

model attribute. As the newly registered user doesn’t have reference to their User object, we’ll have
to manually associate this with their new UserProfile instance when we create it later.

Creating a Profile Registration View

Next, we need to create the corresponding view to handle the processing of a UserProfileForm

form, the subsequent creation of a new UserProfile instance, and instructing Django to render
any response with our new profile_registration.html template. By now, this should be pretty
straightforward to implement. Handling a form means being able to handle a request to render the
form (via a HTTP GET), and being able to process any entered information (via a HTTP POST). A
possible implementation for this view is shown below.

www.tangowithdjango.com

Making Rango Tango! Hints 183

@login_required

def register_profile(request):

form = UserProfileForm()

if request.method == 'POST':

form = UserProfileForm(request.POST, request.FILES)

if form.is_valid():

user_profile = form.save(commit=False)

user_profile.user = request.user

user_profile.save()

return redirect('index')

else:

print(form.errors)

context_dict = {'form':form}

return render(request, 'rango/profile_registration.html', context_dict)

Upon creating a new UserProfileForm instance, we then check our request object to determine if a
GET or POST was made. If the request was a POST, we then recreate the UserProfileForm, using data
gathered from the POST request. As we are also handling a file image upload (for the user’s profile
image), we also need to pull the uploaded file from request.FILES. We then check if the submitted
form was valid - meaning that form fields were filled out correctly. In this case, we only really need
to check if the URL supplied is valid - since the URL and profile picture fields are marked as optional.

With a valid UserProfileForm, we can then create a new instance of the UserProfilemodel with the
line user_profile = form.save(commit=False). Setting commit=False gives us time to manipulate
the UserProfile instance before we commit it to the database. This is where can then add in
the necessary step to associate the new UserProfile instance with the newly created User object
that has been just created (refer to the flow at the top of this section to refresh your memory).
After successfully saving the new UserProfile instance, we then redirect the newly created user to
Rango’s index view, using the URL pattern name. If form validation failed for any reason, errors
are simply printed to the console. You will probably in your own code want to make the handling
of errors more robust.

If the request sent was a HTTP GET, the user simply wants to request a blank form to fill out -
so we respond by rendering the profile_registration.html template created above with a blank
instance of the UserProfileForm, passed to the rendering context dictionary as form - thus satisfying
the requirement we created in our template. This solution should therefore handle all required
scenarios for creating, parsing and saving data from a UserProfileForm form.

www.tangowithdjango.com

Making Rango Tango! Hints 184

Can’t find login_required?
Remember, once a newly registered user hits this view, they will have had a new account
created for them - so we can safely assume that he or she is now logged into Rango. This
is why we are using the @login_required decorator at the top of our view to prevent
individuals from accessing the view when they are unauthorised to do so.

If you are receiving an error stating that the login_required() function (used as a
decorator to our new view) cannot be located, ensure that you have the following import

statement at the top of your view.py module.

from django.contrib.auth.decorators import login_required

Mapping the View to a URL

Now that our template ModelForm and corresponding view have all been implemented, a seasoned
Djangoer should now be thinking:map it! We need to map our new view to a URL, so that users can
access the newly created content. Opening up Rangoâ€™s urls.pymodule and adding the following
line to the urlpatterns list will achieve this.

url(r'^register_profile/$', views.register_profile, name='register_profile'),

This maps our new register_profile() view to the URL /rango/register_profile/. Remember,
the /rango/ part of the URL comes from your project’s urls.pymodule - the remainder of the URL
is then handled by the Rango app’s urls.py module.

Modifying the Registration Flow

Now that everything is (almost) working, we need to tweak the process that users undertake when
registering. Back in the Django registration-redux chapter, we created a new class-based view
called MyRegistrationView that changes the URL that users are redirected to upon a successful
registration. This needs to be changes from redirecting a user to the Rango homepage (with URL
name index) to our new user profile registration URL. From the previous section, we gave this
the name register_profile. This means changing the MyRegistrationView class to look like the
following example.

class MyRegistrationView(RegistrationView):

def get_success_url(self, user):

return url('register_profile')

www.tangowithdjango.com

Making Rango Tango! Hints 185

Nowwhen a user registers, they should be then redirected to the profile registration form - and upon
successful completion of that - be redirected to the Rango homepage. It’s easy when you know how.

Class-Based Views
In this subsection, we mentioned something called class-based views. Class based views
are a different, andmore elegant, but more sophisticatedmechanism, for handling requests.
Rather than taking a functional approach as we have done in this tutorial, that is, in our
views.pywe have written functions to handle each request, the class based approach mean
inheriting and implementing a series methods to handle the requests. For example, rather
than checking if a request was a get or a post, in the class based approach, you would
need to implement a get() and post() method within the class. When your project and
handlers become more complicated, using the Class based approach is more preferable. See
the Django Documentation for more information about Class Based Views.

Additional Exercise

• Go through the Django Documentation and study how to create Class-Based Views.
• Update the Rango application to use Class-Based Views.
• Tweet how awesome you are and let us know @tangowithdjango.

15.4 Viewing your Profile

With the creation of a UserProfile object now complete, let’s implement the functionality to allow
a user to view his or her profile and edit it. The process is again pretty similar to what we’ve done
before. We’ll need to consider the following aspects:

• the creation of a new template, profile.html;
• creating a new view called profile() that uses the profile.html template; and
• mapping the profile() view to a new URL (/rango/profile).

We’ll also need to provide a new hyperlink in Rango’s base.html template to access the new view.
For this solution, we’ll be creating a generalised view that allows you to access the information of
any user of Rango. The code will allow logged in users to also edit their profile; but only their profile
- thus satisfying the requirements of the exercise.

Creating the Template

First, let’s create a simple template for displaying a user’s profile. The following HTML markup
and Django template code should be placed within the new profile.html template within Rango’s
template directory.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/topics/class-based-views/

Making Rango Tango! Hints 186

{% extends 'rango/base.html' %}

{% load staticfiles %}

{% block title %}{{ selecteduser.username }} Profile{% endblock %}

{% block body_block %}

<h1>{{selecteduser.username}} Profile</h1>

<img src="{{ MEDIA_URL }}{{userprofile.picture }}"

width="300"

height="300"

alt="{{selecteduser.username}}" />

<div>

{% if selecteduser.username == user.username %}

<form method="post" action="." enctype="multipart/form-data">

{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Update" />

</form>

{% else %}

<p>Website:

{{userprofile.website}}</p>

{% endif %}

</div>

<div id="edit_profile"></div>

Note that there are a few variables (selecteduser, userprofile and form) that we need to define
in the template’s context - we’ll be doing so in the next section.

The fun part of this template is within the body_block block. The template shows the user’s profile
image at the top. Underneath, the template shows a form allowing the user to change his or her
details, which is populated from the form variable. This form however is only shown when the
selected user matches the user that is currently logged in, thus only allowing the presently logged in
user to edit his or her profile. If the selected user does not match the currently logged in user, then
the selected user’s website is displayed - but it cannot be edited.

You should also take not of the fact that we again use enctype="multipart/form-data" in the form
due to the fact image uploading is used.

www.tangowithdjango.com

Making Rango Tango! Hints 187

Creating the profile() View

Based upon the template created above, we can then implement a simple view to handle the viewing
of user profiles and submission of form data. In Rango’s views.pymodule, create a new view called
profile().

@login_required

def profile(request, username):

try:

user = User.objects.get(username=username)

except User.DoesNotExist:

return redirect('index')

userprofile = UserProfile.objects.get_or_create(user=user)[0]

form = UserProfileForm(

{'website': userprofile.website, 'picture': userprofile.picture})

if request.method == 'POST':

form = UserProfileForm(request.POST, request.FILES, instance=userprofile)

if form.is_valid():

form.save(commit=True)

return redirect('profile', user.username)

else:

print(form.errors)

return render(request, 'rango/profile.html',

{'userprofile': userprofile, 'selecteduser': user, 'form': form})

This view requires that a user be logged in - hence the use of the @login_required decorator. The
view begins by selecting the selected django.contrib.auth.User from the database - if it exists.
If it doesn’t, we perform a simple redirect to Rango’s homepage rather than greet the user with
an error message. We can’t display information for a non-existent user! If the user does exist, we
can therefore select the user’s UserProfile instance. If it doesn’t exist, we can create a blank one.
We then populate a UserProfileForm object with the selected user’s details if we require it. This is
determined by the template as it determines what content is presented to the user.

We then determine if the request is a HTTP POST - meaning that the user submitted a form to update
their account information. We then extract information from the form into a UserProfileForm

instance that is able to reference to the UserProfile model instance that it is saving to, rather than
creating a new UserProfile instance each time. Remember, we are updating, not creating new.
A valid form is then saved. An invalid form or a HTTP GET request triggers the rendering of the
profile.html template with the relevant variables that are passed through to the template via its
context.

www.tangowithdjango.com

Making Rango Tango! Hints 188

A Simple Exercise
How canwe change the code above to prevent unauthorised users from changing the details
of a user account that isn’t theirs?What conditional statement do we need to add to enforce
this additional check?

Mapping the View to a URL

We then need to map our new profile() view to a URL. As usual, this involves the addition
of a single line of code to Rango’s urls.py module. Add the following line to the bottom of the
urlpatterns list.

url(r'^profile/(?P<username>[\w\-]+)/$', views.profile, name='profile'),

Note the inclusion of a username variable which is matched to anything after /profile/ - meaning
that the URL /rango/profile/maxwelld90 would yield a username of maxwelld90, which is in turn
passed to the profile() view as parameter username. This is how we are able to determine what
user the current user has selected to view.

Tweaking the Base Template

Everything should now be working as expected - but it’d be nice to add a link in Rango’s base.html
template to link the currently logged in user to their profile, providing them with the ability to view
or edit it. In Rango’s base.html template, find the code that lists a series of links in the navigation
bar of the page when the user is logged in. Add the following hyperlink to this collection.

Profile

Note that you may want to add additional information to this link, such as adding a class attribute
to the <a> tag to style it correctly. The link called the URL matched to name profile (see above),
specifying the currently logged in username as the subsequent portion of the URL.

www.tangowithdjango.com

Making Rango Tango! Hints 189

Rango’s complete user profile page.

15.5 Listing all Users

Our final challenge is to create another page that allows one to view a list of all users on the Rango
app. This one is relatively straightforward - we need to implement another template, view and URL
mapping - but the view in this instance is very simplistic. We’ll be creating a list of users registered
to Rango - and providing a hyperlink to view their profile using the code we implemented in the
previous section.

Creating a Template for User Profiles

In Rango’s templates directory, create a template called list_profiles.html, within the file, add
the following HTML markup and Django template code.

www.tangowithdjango.com

Making Rango Tango! Hints 190

{% extends 'rango/base_bootstrap.html' %}

{% load staticfiles %}

{% block title %}User Profiles{% endblock %}

{% block body_block %}

<h1>User Profiles</h1>

<div class="panel">

{% if userprofile_list %}

<div class="panel-heading">

<!-- Display search results in an ordered list -->

<div class="panel-body">

<div class="list-group">

{% for listuser in userprofile_list %}

<div class="list-group-item">

<h4 class="list-group-item-heading">

{{ listuser.user.username }}

</h4>

</div>

{% endfor %}

</div>

</div>

</div>

{% else %}

<p>There are no users for the site.</p>

{% endif %}

</div>

{% endblock %}

This template is relatively straightforward - we created a series of <div> tags using various Bootstrap
classes to style the list. For each user, we display their username and provide a link to their profile
page. Notice since we pass through a list of UserProfile objects, to access the username of the user,
we need to go view the user property of the UserProfile object to get username.

Creating the View

With our template created, we can now create the corresponding view that selects all users from the
UserProfile model. We also make the assumption that the current user must be logged in to view
the other users of Rango. The following view list_profiles() can be added to Rango’s views.py
module to provide this functionality.

www.tangowithdjango.com

Making Rango Tango! Hints 191

@login_required

def list_profiles(request):

userprofile_list = UserProfile.objects.all()

return render(request, 'rango/list_profiles.html',

{'userprofile_list' : userprofile_list})

Mapping the View and Adding a Link

Our final step is to map a URL to the new list_profiles() view. Add the following to the
urlpatterns list in Rango’s urls.py module to do this.

url(r'^profiles/$', views.list_profiles, name='list_profiles'),

We could also add a new hyperlink to Rango’s base.html template, allowing users who are logged
in to view the new page. Like before, add the following markup to the base template which provides
links only to logged in users.

List Profiles

With this link added you should be able to now view the list of user profiles, and view specific
profiles.

Profile Page Exercise

• Update the profile list to include a thumbnail of the user’s profile picture.
• If a user does not have a profile picture, then insert a substitute picture by using the
service provide by LoremPixel that lets you automatically generate images.

Hint: you can use

from LoremPixel to get a picture of people that is 64x64 in size. Note that it might take a
few seconds for the picture to download.

www.tangowithdjango.com

ttp://lorempixel.com/
http://lorempixel.com/64/64/people/

16. JQuery and Django
JQuery rocks! JQuery is a library written in JavaScript that lets you access the power of JavaScript
without the pain. This is because a few lines of JQuery often encapsulates hundreds of lines of
JavaScript. Also, JQuery provides a suite of functionality that is mainly focused on manipulating
HTML elements. In this chapter, we will describe:

• how to incorporate JQuery within your Django app;
• explain how to interpret JQuery code; and
• and provide a number of small examples.

16.1 Including JQuery in Your Django Project/App

In your base template include a reference to:

{% load staticfiles %}

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.0.0/jquery.min.js">

<script src="{% static "js/rango-jquery.js" %}"></script>

or if you have downloaded and saved a copy to your static directory, then you can reference it as
follows:

{% load staticfiles %}

<script src="{% static "js/jquery.min.js" %}"></script>

<script src="{% static "js/rango-jquery.js" %}"></script>

Make sure you have your static files set up (see Chapter Templates and Static Media)

In the static directory, create a js directory and place the JQuery JavaScript file (jquery.js) here
along with an file called rango-jquery.js. This script will house our JavaScript code. In rango-

jquery.js, add the following JavaScript:

$(document).ready(function() {

// JQuery code to be added in here.

});

JQuery and Django 193

This piece of JavaScript utilises JQuery. It first selects the document object (with $(document)),
and then makes a call to ready(). Once the document is ready (i.e. the complete page is loaded),
the anonymous function denoted by function() { } will be executed. It is pretty typical, if not
standard, to wait until the document has been finished loading before running the JQuery functions.
Otherwise, the code may begin executing before all the HTML elements have been downloaded. See
the JQuery Documentation on Ready for more details.

Select and Act Pattern
JQuery requires you to think in a more functional programming style, as opposed to the
typical JavaScript style which is often written in a more procedural programming style. For
all the JQuery commands, they follow a similar pattern: Select and Act. Select an element,
and then perform some action on/with the element.

Example Popup Box on Click

In this example, we want to show you the difference between doing the same functionality in
standard JavaScript versus JQuery. In your about.html template, add the following piece of code:

<button class="btn btn-primary"

onClick="alert('You clicked the button using JavaScript.');">

Click Me - I run JavaScript

</button>

As you can see, we are assigning the function alert() to the onClick handler of the button. Load
up the about page, and try it out. Now lets do it using JQuery, by first adding another button:

<button class="btn btn-primary" id="about-btn">

Click Me - I'm JavaScript on Speed</button>

<p>This is a example</p>

<p>This is another example</p>

Notice that there is no JavaScript code associated with the button currently. We will be doing that
with the following code added to rango-jquery.js:

www.tangowithdjango.com

http://api.jquery.com/ready/

JQuery and Django 194

$(document).ready(function() {

$("#about-btn").click(function(event) {

alert("You clicked the button using JQuery!");

});

});

Reload the page, and try it out. Hopefully, you will see that both buttons pop up an alert.

The JQuery/JavaScript code here first selects the document object, and when it is ready, it executes
the functions within its body, i.e. $("#about-btn").click(). This code selects the element in the
page with an id equal to about-btn, and then programatically assigns to the click event the alert()
function.

At first, you might think that JQuery is rather cumbersome, as it requires us to include a lot more
code to do the same thing. This may be true for a simple function like alert(). For more complex
functions, it is much cleaner as the JQuery/JavaScript code is maintained in a separate file. This is
because we assign the event handler at runtime rather than statically within the code. We achieve
separation of concerns between the JQuery/JavaScript code and the HTML markup.

Keep Them Separated
Separation of Concerns is a design principle that is good to keep in mind. In terms of web
apps, the HTML is responsible for the page content; CSS is used to style the presentation of
the content, while JavaScript is responsible for how the user can interact with the content,
and manipulating the content and style.

By keeping them separated, you will have cleaner code and you will reduce maintenance
woes in the future.

Put another way, never mix, never worry!

Selectors

There are different ways to select elements in JQuery. The above example shows how the # selector
can be used to find elements with a particular id in your HTML document. To find classes, you can
use the . selector, as shown in the example below.

$(".ouch").click(function(event) {

alert("You clicked me! ouch!");

});

Then all elements in the document that have the class="ouch" would be selected, and assigned to
its on click handler, the alert() function. Note that all the elements would be assigned the same
function.

HTML tags can also be selected by referring to the tag in the selector:

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Separation_of_concerns

JQuery and Django 195

$("p").hover(function() {

$(this).css('color', 'red');

},

function() {

$(this).css('color', 'blue');

});

Add this JavaScript to your rango-jquery.js, and then in the about.html template, add a paragraph,
<p>This text is for a JQuery Example</p>. Try it out, go to the about page and hover over the
text.

Here, we are selecting all the p HTML elements, and on hover we are associated two functions, one
for on hover, and the other for hover off. You can see that we are using another selector called, this,
which selects the element in question, and then sets its colour to red or blue respectively. Note that
the JQuery hover() function takes two functions, and the JQuery click() function requires the
event to be passed through.

Try adding the above code your rango-jquery.js file, making sure it is within the $(docu-

ment).ready() function. What happens if you change the $(this) to $(p)?

Hovering is an example of a mouse move event. For descriptions on other such events, see the JQuery
API documentation.

16.2 DOMManipulation Example

In the above example, we used the hover function to assign an event handler to the on hover event,
and then used the css function to change the colour of the element. The css function is one example
of DOM manipulation, however, the standard JQuery library provides many other ways in which
to manipulate the DOM. For example, we can add classes to elements, with the addClass function:

$("#about-btn").addClass('btn btn-primary')

This will select the element with id #about-btn, and assign the classes btn and btn-primary to it.
By adding these Bootstrap classes, the button will now appear in the Bootstrap style (assuming you
are using the Bootstrap toolkit).

It is also possible to access the inner HTML of a particular element. For example, lets put a div in
the about.html template:

<div id="msg">Hello - I'm here for a JQuery Example too</div>

Then add the following JQuery to rango-jquery.js:

www.tangowithdjango.com

http://api.jquery.com/hover/
http://api.jquery.com/click/
http://api.jquery.com/category/events/mouse-events/
http://api.jquery.com/category/events/mouse-events/

JQuery and Django 196

$("#about-btn").click(function(event) {

msgstr = $("#msg").html()

msgstr = msgstr + "ooo"

$("#msg").html(msgstr)

});

When the element with id #about-btn is clicked, we first get the HTML inside the element with
id msg and append "o" to it. We then change the HTML inside the element by calling the html()
function again, but this time passing through string msgstr to replace the HTML inside that element.

In this chapter, we have provided a very rudimentary guide to using JQuery and how you can
incorporate it within your Django app. From here, you should be able to understand how JQuery
operates and experiment with the different functions and libraries provided by JQuery and JQuery
developers. In the next chapter, we will be using JQuery to help provide AJAX functionality within
Rango.

www.tangowithdjango.com

17. AJAX in Django with JQuery
AJAX essentially is a combination of technologies that are integrated together to reduce the number
of page loads. Instead of reloading the full page, only part of the page or the data in the page is
reloaded. If you haven’t used AJAX before or would like to know more about it before using it,
check out the AJAX resources at the Mozilla website.

To simplify the AJAX requests, we will be using the JQuery library. Note that if you are using the
Twitter CSS Bootstrap toolkit then JQuery will already be added in. We are using JQuery version 3.
Otherwise, download the JQuery library and include it within your application, i.e. save it within
your project into the static/js/ directory.

17.1 AJAX based Functionality

To modernise the Rango application, let’s add in a number of features that will use AJAX, such as:

• adding a “Like Button” to let registered users “like” a particular category;
• adding inline category suggestions - so that when a user types they can quickly find a category;
and

• adding an “Add Button” to let registered users quickly and easily add a Page to the Category
when they perform a search.

Create a new file, called rango-ajax.js and add it to your static/js/ directory. Then in your base
template include:

<script src="{% static "js/jquery.min.js" %}"></script>

<script src="{% static "js/rango-ajax.js" %}"></script>

Here we assume you have downloaded a version of the JQuery library, but you can also just directly
refer to it:

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.0.0/jquery.min.js">

</script>

If you are using Bootstrap, then scroll to the bottom of the template code, You will see the JQuery
library being imported at the end. You can then add a link to rango-ajax.js after the JQuery library
import.

Now that we have setup JQuery and have a place to put our client side AJAX code, we can now
modify the Rango app.

https://developer.mozilla.org/en-US/docs/AJAX
https://ajax.googleapis.com/ajax/libs/jquery/3.0.0/jquery.min.js

AJAX in Django with JQuery 198

17.2 Add a Like Button

It would be nice to let users, who are registered, denote that they “like” a particular category. In
the following workflow, we will let users “like” categories, but we will not be keeping track of what
categories they have “liked”. A registered user could click the like button multiple times if they
refresh the page. If we wanted to keep track of their likes, we would have to add in an additional
model, and other supporting infrastructure, but we’ll leave that as an exercise for you to complete.

Workflow

To let users “like” certain categories, undertake the following workflow.

• In the category.html template:
– Add in a “Like” button with id="like".
– Add in a template tag to display the number of likes: {{% category.likes %}}

– Place this inside a div with id="like_count", i.e. <div id="like_count">{{ cate-

gory.likes }} </div>

– This sets up the template to capture likes and to display likes for the category.
– Note, since the category() view passes a reference to the category object, we can use
that to access the number of likes, with {{ category.likes }} in the template

• Create a view called, like_category which will examine the request and pick out the
category_id and then increment the number of likes for that category.

– Don’t forgot to add in the url mapping; i.e. map the like_category view to rango/like_-
category/. The GET request will then be rango/like_category/?category_id=XXX

– Instead of returning a HTML page have this view will return the new total number of
likes for that category.

• Now in rango-ajax.js add the JQuery code to perform the AJAX GET request.
– If the request is successful, then update the #like_count element, and hide the like
button.

Updating Category Template

To prepare the template, we will need to add in the “like” button with id="like" and create a <div>
to display the number of likes {{% category.likes %}}. To do this, add the following <div> to the
category.html template after the <h1>{{ category.name }}</h1> tag.

www.tangowithdjango.com

AJAX in Django with JQuery 199

<div>

<strong id="like_count">{{ category.likes }} people like this category

{% if user.is_authenticated %}

<button id="likes" data-catid="{{category.id}}"

class="btn btn-primary btn-sm" type="button">

Like

</button>

{% endif %}

</div>

Create a Like Category View

Create a new view called, like_category in rango/views.py which will examine the request and
pick out the category_id and then increment the number of likes for that category.

from django.contrib.auth.decorators import login_required

@login_required

def like_category(request):

cat_id = None

if request.method == 'GET':

cat_id = request.GET['category_id']

likes = 0

if cat_id:

cat = Category.objects.get(id=int(cat_id))

if cat:

likes = cat.likes + 1

cat.likes = likes

cat.save()

return HttpResponse(likes)

On examining the code, you will see that we are only allowing authenticated users to even access
this view because we have put a decorator @login_required before our view.

Note that the view assumes that a variable category_id has been passed to it via a GET request
so that we can identify the category to update. In this view, we could also track and record that a
particular user has “liked” this category if we wanted - but we are keeping it simple to focus on the
AJAX mechanics.

Don’t forget to add in the URL mapping, into rango/urls.py. Update the urlpatterns by adding
in:

www.tangowithdjango.com

AJAX in Django with JQuery 200

url(r'^like/$', views.like_category, name='like_category'),

Making the AJAX request

Now in “rango-ajax.js” you will need to add some JQuery code to perform an AJAX GET request.
Add in the following code:

$('#likes').click(function(){

var catid;

catid = $(this).attr("data-catid");

$.get('/rango/like/', {category_id: catid}, function(data){

$('#like_count').html(data);

$('#likes').hide();

});

});

This piece of JQuery/JavaScript will add an event handler to the element with id #likes, i.e. the
button. When clicked, it will extract the category ID from the button element, and then make
an AJAX GET request which will make a call to /rango/like/ encoding the category_id in the
request. If the request is successful, then the HTML element with ID like_count (i.e. the
) is updated with the data returned by the request, and the HTML element with ID likes (i.e. the
<button>) is hidden.

There is a lot going on here, and getting the mechanics right when constructing pages with AJAX
can be a bit tricky. Essentially, an AJAX request is made given our URL mapping when the button is
clicked. This invokes the like_category view that updates the category and returns the new number
of likes. When the AJAX request receives the response, it updates parts of the page, i.e. the text and
the button. The #likes button is hidden.

17.3 Adding Inline Category Suggestions

It would be really neat if we could provide a fast way for users to find a category, rather than
browsing through a long list. To do this we can create a suggestion component that lets users type in
a letter or part of a word, and then the system responds by providing a list of suggested categories,
that the user can then select from. As the user types a series of requests will be made to the server
to fetch the suggested categories relevant to what the user has entered.

Workflow

To do this you will need to do the following.

www.tangowithdjango.com

AJAX in Django with JQuery 201

• Create a parameterised function called get_category_list(max_results=0, starts_with='')

that returns all the categories starting with starts_with if max_results=0 otherwise it returns
up to max_results categories.

– The function returns a list of category objects annotated with the encoded category
denoted by the attribute, url

• Create a view called suggest_category which will examine the request and pick out the
category query string.

– Assume that a GET request is made and attempt to get the query attribute.
– If the query string is not empty, ask the Category model to get the top 8 categories that
start with the query string.

– The list of category objects will then be combined into a piece of HTML via template.
– Instead of creating a template called suggestions.html re-use the cats.html as it will
be displaying data of the same type (i.e. categories).

– To let the client ask for this data, you will need to create a URL mapping; lets call it
suggest

With the URLmapping, view, and template in place, you will need to update the base.html template
to provide a category search box, and then add in some JavaScript/JQuery code to link up everything
so that when the user types the suggested categories are displayed.

In the base.html template modify the sidebar block so that a div with an id=”cats” encapsulates the
categories being presented. The JQuery/AJAX will update this element. Before this <div> add an
input box for a user to enter the letters of a category, i.e.:

<input class="input-medium search-query" type="text"

name="suggestion" value="" id="suggestion" />

With these elements added into the templates, you can add in some JQuery to update the categories
list as the user types.

• Associate an on keypress event handler to the input with id="suggestion"

• $('#suggestion').keyup(function(){ ... })

• On keyup, issue an ajax call to retrieve the updated categories list
• Then use the JQuery .get() function i.e. $(this).get(...)

• If the call is successful, replace the content of the <div> with id=”cats” with the data received.
• Here you can use the JQuery .html() function i.e. $('#cats').html(data)

Exercise

• Update the population script by adding in the following categories: Pascal, Perl,
PHP, Prolog, PostScript and Programming. These additional categories will make
the demo of the inline category suggestion functionality more impressive.

www.tangowithdjango.com

AJAX in Django with JQuery 202

Parameterising get_category_list()

In this helper function, we use a filter to find all the categories that start with the string supplied.
The filter we use will be istartwith, this will make sure that it doesn’t matter whether we use
uppercase or lowercase letters. If it on the other hand was important to take into account whether
letters was uppercase or not you would use startswith instead.

def get_category_list(max_results=0, starts_with=''):

cat_list = []

if starts_with:

cat_list = Category.objects.filter(name__istartswith=starts_with)

if max_results > 0:

if len(cat_list) > max_results:

cat_list = cat_list[:max_results]

return cat_list

Create a Suggest Category View

Using the get_category_list() function, we can now create a view that returns the top eight
matching results as follows:

def suggest_category(request):

cat_list = []

starts_with = ''

if request.method == 'GET':

starts_with = request.GET['suggestion']

cat_list = get_category_list(8, starts_with)

return render(request, 'rango/cats.html', {'cats': cat_list })

Note here we are reusing the rango/cats.html template.

Map View to URL

Add the following code to urlpatterns in rango/urls.py:

url(r'^suggest/$', views.suggest_category, name='suggest_category'),

Update Base Template

In the base template, in the sidebar <div>, add in the following HTML markup:

www.tangowithdjango.com

AJAX in Django with JQuery 203

<ul class="nav nav-list">

<li class="nav-header">Type to find a category

<form>

<input class="search-query form-control" type="text"

name="suggestion" value="" id="suggestion" />

</form>

<hr>

<div id="cats">

</div>

Here, we have added in an input box with id="suggestion" and div with id="cats" in which we
will display the response. We don’t need to add a button as we will be adding an event handler on
keyup to the input box that will send the suggestion request.

Next remove the following lines from the template:

{% block sidebar_block %}

{% get_category_list category %}

{% endblock %}

Add AJAX to Request Suggestions

Add the following JQuery code to the js/rango-ajax.js:

$('#suggestion').keyup(function(){

var query;

query = $(this).val();

$.get('/rango/suggest/', {suggestion: query}, function(data){

$('#cats').html(data);

});

});

Here, we attached an event handler to the HTML input element with id="suggestion" to trigger
when a keyup event occurs. When it does, the contents of the input box is obtained and placed into
the query variable. Then a AJAX GET request is made calling /rango/category_suggest/ with the
query as the parameter. On success, the HTML element with id="cats" (i.e. the <div>) is updated
with the category list HTML.

www.tangowithdjango.com

AJAX in Django with JQuery 204

An example of the inline category suggestions. Notice how the suggestions populate and change as the user types
each individual character.

Exercises
To let registered users quickly and easily add a Page to the Category put an “Add” button
next to each search result. - Update the category.html template: - Add a small button next
to each search result (if the user is authenticated), garnish the button with the title and
URL data, so that the JQuery can pick it out. - Put a <div> with id="page" around the
pages in the category so that it can be updated when pages are added. - Remove that link
to add button, if you like. - Create a view auto_add_page that accepts a parameterised
GET request (title, url, catid) and adds it to the category. - Map an URL to the
view url(r'ˆadd/$', views.auto_add_page, name='auto_add_page'), - Add an event
handler to the add buttons using JQuery - when added hide the button. The response could
also update the pages listed on the category page, too.

Wehave included the following code fragments to help you complete the exercises above. The HTML
template code for category.html that inserts a button, and crucially keeps a record of the category
that the button is associated with.

{% if user.is_authenticated %}

<button data-catid="{{category.id}}" data-title="{{ result.title }}"

data-url="{{ result.link }}"

class="rango-add btn btn-info btn-sm" type="button">Add</button>

{% endif %}

The JQuery code that adds the click event handler to every button with the class rango-add:

www.tangowithdjango.com

AJAX in Django with JQuery 205

$('.rango-add').click(function(){

var catid = $(this).attr("data-catid");

var url = $(this).attr("data-url");

var title = $(this).attr("data-title");

var me = $(this)

$.get('/rango/add/',

{category_id: catid, url: url, title: title}, function(data){

$('#pages').html(data);

me.hide();

});

});

The view code that handles the adding of a link to a category:

@login_required

def auto_add_page(request):

cat_id = None

url = None

title = None

context_dict = {}

if request.method == 'GET':

cat_id = request.GET['category_id']

url = request.GET['url']

title = request.GET['title']

if cat_id:

category = Category.objects.get(id=int(cat_id))

p = Page.objects.get_or_create(category=category,

title=title, url=url)

pages = Page.objects.filter(category=category).order_by('-views')

Adds our results list to the template context under name pages.

context_dict['pages'] = pages

return render(request, 'rango/page_list.html', context_dict)

The HTML template markup for the new template page_list.html:

www.tangowithdjango.com

AJAX in Django with JQuery 206

1 {% if pages %}

2

3 {% for page in pages %}

4 {{ page.title }}

5 {% endfor %}

6

7 {% else %}

8 No pages currently in category.

9 {% endif %}

Finally, don’t forget to add in the URLmapping: url(r'ˆadd/$', views.auto_add_page, name='auto_-

add_page'),.

If all has gone well, hopefully, your Rango application will be looking something like screenshots
below. But don’t stop now, get on with the next chapters and deploy your project!

The main index page of the Rango application.

www.tangowithdjango.com

AJAX in Django with JQuery 207

The category page with the Add Button feature.

www.tangowithdjango.com

18. Automated Testing
It is good practice to get into the habit of writing and developing tests. A lot of software engineering
is about writing and developing tests and test suites in order to ensure the software is robust. Of
course, most of the time, we are too busy trying to build things to bother about making sure that
they work. Or too arrogant to believe it would fail.

According to the Django Tutorial, there are numerous reasons why you should include tests.

• Test will save you time: a change in a complex system can cause failures in unpredictable
places.

• Tests don’t just identify problems, they prevent them: tests showwhere the code is not meeting
expectations.

• Test make your code more attractive: “Code without tests is broken by design” - Jacob Kaplan-
Moss, one of Django’s original developers.

• Tests help teams work together: they make sure your team doesn’t inadvertently break your
code.

According to the Python Guide, there are a number of general rules you should try to follow when
writing tests. Below are some main rules.

• Tests should focus on one small bit of functionality
• Tests should have a clear purpose
• Tests should be independent.
• Run your tests, before you code, and before your commit and push your code.
• Even better create a hook that tests code on push.
• Use long and descriptive names for tests.

Testing in Django
Currently this chapter provides the very basics of testing and follows a similar format to
the Django Tutorial, with some additional notes. We hope to expand this further in the
future.

18.1 Running Tests

With Django is a suite of functionality to test apps built. You can test your Rango app by issuing the
following command:

https://docs.djangoproject.com/en/1.9/intro/tutorial05/
http://docs.python-guide.org/en/latest/writing/tests/
https://docs.djangoproject.com/en/1.9/intro/tutorial05/

Automated Testing 209

$ python manage.py test rango

Creating test database for alias 'default'...

--

Ran 0 tests in 0.000s

OK

Destroying test database for alias 'default'...

This will run through the tests associated with the Rango app. At the moment, nothing much
happens. That is because you may have noticed the file rango/tests.py only contains an import
statement. Every time you create an application, Django automatically creates such a file to
encourage you to write tests.

From this output, you might also notice that a database called default is referred to. When you run
tests, a temporary database is constructed, which your tests can populate, and perform operations
on. This way your testing is performed independently of your live database.

Testing the models in Rango

Let’s create a test. In the Category model, we want to ensure that views are either zero or positive,
because the number of views, let’s say, can never be less than zero. To create a test for this we can
put the following code into rango/tests.py:

from django.test import TestCase

from rango.models import Category

class CategoryMethodTests(TestCase):

def test_ensure_views_are_positive(self):

"""

ensure_views_are_positive should results True for categories

where views are zero or positive

"""

cat = Category(name='test',views=-1, likes=0)

cat.save()

self.assertEqual((cat.views >= 0), True)

The first thing you should notice, if you have not written tests before, is that we have to inherit
from TestCase. The naming over the method in the class also follows a convention, all tests start
with test_ and they also contain some type of assertion, which is the test. Here we are checking if
the values are equal, with the assertEqual method, but other types of assertions are also possible.

www.tangowithdjango.com

Automated Testing 210

See the Python 2 Documentation on unit tests or the Python 3 Documentation on unit tests for
other commands (i.e. assertItemsEqual, assertListEqual, assertDictEqual, etc). Django’s testing
machinery is derived from Python’s but also provides a number of other asserts and specific test
cases.

Now let’s run the test:

$ python manage.py test rango

Creating test database for alias 'default'...

F

==

FAIL: test_ensure_views_are_positive (rango.tests.CategoryMethodTests)

--

Traceback (most recent call last):

File "/Users/leif/Code/tango_with_django_project_19/rango/tests.py",

line 12, in test_ensure_views_are_positive

self.assertEqual((cat.views>=0), True)

AssertionError: False != True

--

Ran 1 test in 0.001s

FAILED (failures=1)

As we can see this test fails. This is because the model does not check whether the value is less than
zero or not. Since we really want to ensure that the values are non-zero, we will need to update the
model, to ensure that this requirement is fulfilled. Do this now by adding some code to the Category
models, save() method, that checks the value of views, and updates it accordingly.

Once you have updated your model, you can now re-run the test, and see if your code now passes
it. If not, try again.

Let’s try adding another test that ensures an appropriate slug line is created, i.e. one with dashes,
and in lowercase. Add the following code to rango/tests.py:

www.tangowithdjango.com

https://docs.python.org/2/library/unittest.html
https://docs.python.org/3/library/unittest.html

Automated Testing 211

def test_slug_line_creation(self):

"""

slug_line_creation checks to make sure that when we add

a category an appropriate slug line is created

i.e. "Random Category String" -> "random-category-string"

"""

cat = cat('Random Category String')

cat.save()

self.assertEqual(cat.slug, 'random-category-string')

Does your code still work?

Testing Views

So far we have written tests that focus on ensuring the integrity of the data housed in the models.
Django also provides testingmechanisms to test views. It does this with a mock client, that internally
makes a calls a Django view via the URL. In the test you have access to the response (including the
HTML) and the context dictionary.

Let’s create a test that checks that when the index page loads, it displays the message that There
are no categories present, when the Category model is empty.

from django.core.urlresolvers import reverse

class IndexViewTests(TestCase):

def test_index_view_with_no_categories(self):

"""

If no questions exist, an appropriate message should be displayed.

"""

response = self.client.get(reverse('index'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, "There are no categories present.")

self.assertQuerysetEqual(response.context['categories'], [])

First of all, the Django TestCase has access to a client object, which can make requests. Here, it
uses the helper function reverse to look up the URL of the index page. Then it tries to get that page,
where the response is stored. The test then checks a number of things: whether the page loaded
OK, whether the response HTML contains the phrase "There are no categories present.", and
whether the context dictionary contains an empty categories list. Recall that when you run tests, a
new database is created, which by default is not populated.

Let’s now check the resulting view when categories are present. First add a helper method.

www.tangowithdjango.com

Automated Testing 212

from rango.models import Category

def add_cat(name, views, likes):

c = Category.objects.get_or_create(name=name)[0]

c.views = views

c.likes = likes

c.save()

return c

Then add another method to the class IndexViewTests(TestCase):

def test_index_view_with_categories(self):

"""

Check to make sure that the index has categories displayed

"""

add_cat('test',1,1)

add_cat('temp',1,1)

add_cat('tmp',1,1)

add_cat('tmp test temp',1,1)

response = self.client.get(reverse('index'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, "tmp test temp")

num_cats =len(response.context['categories'])

self.assertEqual(num_cats , 4)

In this test, we populate the database with four categories, and then check that the loaded page
contains the text tmp test temp and if the number of categories is equal to 4. Note that this makes
three checks, but is only considered to be one test.

Testing the Rendered Page

It is also possible to perform tests that load up the application and programmatically interact with
the DOM elements on the HTML pages by using either Django’s test client and/or Selenium, which
is are “in-browser” frameworks to test the way the HTML is rendered in a browser.

18.2 Coverage Testing

Code coverage measures how much of your code base has been tested, and how much of your code
has been put through its paces via tests. You can install a package called coverage via with pip

www.tangowithdjango.com

Automated Testing 213

install coverage that automatically analyses how much code coverage you have. Once you have
coverage installed, run the following command:

$ coverage run --source='.' manage.py test rango

This will run through all the tests and collect the coverage data for the Rango application. To see the
coverage report you need to then type:

$ coverage report

Name Stmts Miss Cover

--

manage 6 0 100%

populate 33 33 0%

rango/__init__ 0 0 100%

rango/admin 7 0 100%

rango/forms 35 35 0%

rango/migrations/0001_initial 5 0 100%

rango/migrations/0002_auto_20141015_1024 5 0 100%

rango/migrations/0003_category_slug 5 0 100%

rango/migrations/0004_auto_20141015_1046 5 0 100%

rango/migrations/0005_userprofile 6 0 100%

rango/migrations/__init__ 0 0 100%

rango/models 28 3 89%

rango/tests 12 0 100%

rango/urls 12 12 0%

rango/views 110 110 0%

tango_with_django_project/__init__ 0 0 100%

tango_with_django_project/settings 28 0 100%

tango_with_django_project/urls 9 9 0%

tango_with_django_project/wsgi 4 4 0%

--

TOTAL 310 206 34%

We can see from the above report that critical parts of the code have not been tested, i.e. rango/views.
The coverage package has many more features that you can explore to make your tests even more
comprehensive!

www.tangowithdjango.com

http://nedbatchelder.com/code/coverage/

Automated Testing 214

Exercises
Lets say that we want to extend the Page to include two additional fields, last_visit and
first_visit that will be of type timedate.

• Update the model to include these two fields.
• Update the add page functionality, and the goto functionality.
• Add in a test to ensure the last visit or first visit is not in the future.
• Add in a test to ensure that the last visit equal to or after the first visit.
• Run through Part Five of the official Django Tutorial to learn more about testing.
• Check out the tutorial on test driven development by Harry Percival.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/intro/tutorial05/
http://www.tdd-django-tutorial.com/

19. Deploying Your Project
This chapter provides a step-by-step guide on how to deploy your Django applications. We’ll be
looking at deploying applications on PythonAnywhere, an online IDE and web hosting service. The
service provides in-browser access to the server-based Python and Bash command line interfaces,
meaning you can interact with PythonAnywhere’s servers just like you would with a regular
terminal instance on your own computer. Currently, PythonAnywhere are offering a free account
that sets you up with an adequate amount of storage space and CPU time to get a Django application
up and running.

Go Git It!
You can do this chapter independently as we have already implemented Rango and it is
available from GitHub. If you haven’t used Git/GitHub before, you can check out our
chapter on using Git).

19.1 Creating a PythonAnywhere Account

First, sign up for a Beginner PythonAnywhere account. If your application takes off and becomes
popular, you can always upgrade your account at a later stage to gain more storage space and CPU
time along with a number of other benefits - such as hosting specific domains and SSH abilities, for
example.

Once your account has been created, you will have your own little slice of the World Wide Web at
http://<username>.pythonanywhere.com, where <username> is your PythonAnywhere username.
It is from this URL that your hosted application will be available.

19.2 The PythonAnywhere Web Interface

The PythonAnywhere web interface contains a dashboard which in turn provides a series of tabs
allowing you to manage your application. The tabs as illustrated in the figure below include:

• a consoles tab, allowing you to create and interact with Python and Bash console instances;
• a files tab, which allows you to upload to and organise files within your disk quota;
• a web tab, allowing you to configure settings for your hosted web application;
• a schedule tab, allowing you to setup tasks to be executed at particular times; and

https://www.pythonanywhere.com/?affiliate_id=000116e3
https://www.pythonanywhere.com/?affiliate_id=000116e3

Deploying Your Project 216

• a databases tab, which allows you to configure aMySQL instance for your applications should
you require it.

Of the five tabs provided, we’ll be working primarily with the consoles and web tabs. The
PythonAnywhere Wiki provides a series of detailed explanations on how to use the other tabs.

The PythonAnywhere dashboard, showing the Consoles tab.

www.tangowithdjango.com

https://www.pythonanywhere.com/wiki/

Deploying Your Project 217

19.3 Creating a Virtual Environment

As part of its standard default Bash environment, PythonAnywhere comes with Python 2.7.6 and
a number of pre-installed Python Packages (including Django 1.3.7 and Django-Registration 0.8).
Since we are using a different setup, we need to select a particular Python version and setup a
virtual environment for our application.

First, open a Bash console from the PythonAnywhere Consoles tab by clicking the Bash link. When
the terminal is ready for you to use, enter the following commands.

$ mkvirtualenv --python=<python-version> rango

If you’ve coded up the tutorial using Python 3.x, then change <python-version> to either python3.4
or python3.5. If you are using Python 2.7.x, then change <python-version> to python2.7. The
command you enter creates a new virtual environment called rango using the version of Python
that you specified. For example, below is the output for when we created a Python 2.7 virtual
environment.

13:38 ~ $ mkvirtualenv --python=python2.7 rango

Running virtualenv with interpreter /usr/bin/python2.7

New python executable in /home/rangodemo/.virtualenvs/rango/bin/python2.7

Also creating executable in /home/rangodemo/.virtualenvs/rango/bin/python

Installing setuptools, pip, wheel...done.

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../predeactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../postdeactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../preactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../postactivate

virtualenvwrapper creating /home/rangodemo/.virtualenvs/.../get_env_details

Note in the example above, the PythonAnywhere username used is rangodemo - this will be replaced
with your own username. The process of creating the virtual environment will take a little while to
complete, after which you will be presented with a slightly different prompt.

(rango)13:40 ~ $

Note the inclusion of (rango) compared to the previous command prompt. This signifies that the
rango virtual environment has been activated, so any package installations will be done within that
virtual environment, leaving the wider system setup alone. If you issue the command ls -la, you
will see that a directory called .virtualenvs has been created. This is the directory in which all
of your virtual environments and associated packages will be stored. To confirm the setup, issue
the command which pip. This will print the location in which the active pip binary is located -
hopefully within .virtualenvs and rango, as shown in the example below.

www.tangowithdjango.com

Deploying Your Project 218

/home/<username>/.virtualenvs/test/bin/pip

To see what packages are already installed, enter pip list. Now we can customise the virtual
environment by installing the required packages for our Rango application. Install all the required
packages, by issuing the following commands.

$ pip install -U django==1.9.10

$ pip install pillow

$ pip install django-registration-redux

$ pip install django-bootstrap-toolkit

Alternatively, you could use pip freeze > requirements.txt to save your current development
environment, and then on PythonAnywhere, run pip install -r requirements.txt to install all
the packages in one go.

Waiting to Download…
Installing all theses packages may take some time, so you can relax, call a friend, or tweet
about our tutorial @tangowithdjango!

Once installed, check if Django has been installed with the command which django-admin.py. You
should receive output similar to the following example.

/home/<username>/.virtualenvs/rango/bin/django-admin.py

Virtual Environments on PythonAnywhere
PythonAnywhere also provides instructions on how to setup virtual environments. Check
out their Wiki documentation for more information.

Virtual Environment Switching

Moving between virtual environments can be done pretty easily. For this to work, you need to make
sure that virtualenvwrapper.sh has been loaded by running source virtualenvwrapper.sh.

Rather than doing this each time you open up a console, you can add it to your .bashrc profile which
is located in your home directory. Doing so will ensure the command is executed automatically for
you every time you start a new Bash console instance. Any Bash consoles active will need to be
closed for the changes to take effect.

With this done, you can then launch into a pre-existing virtual environment with the workon

command. To load up the rango environment, enter:

www.tangowithdjango.com

https://help.pythonanywhere.com/pages/VirtualEnvForNewerDjango
https://help.pythonanywhere.com/pages/VirtualEnvForNewerDjango

Deploying Your Project 219

16:48 ~ $ workon rango

where rango can be replaced with the name of the virtual environment you wish to use. Your prompt
should then change to indicate you are working within a virtual environment.

(rango) 16:49 ~ $

You can then leave the virtual environment using the deactivate command. Your prompt should
then be missing the (rango) prefix, with an example shown below.

(rango) 16:49 ~ $ deactivate

16:51 ~ $

Cloning your Git Repository

Now that your virtual environment for Rango is all setup, you can now clone your Git repository to
obtain a copy of your project’s files. Clone your repository by issuing the following command from
your home directory:

$ git clone https://<USERNAME>:<PASSWORD>@github.com/<OWNER>/<REPO_NAME>.git

where you replace - <USERNAME> with your GitHub username; - <PASSWORD> with your GitHub
password; - <OWNER> with the username of the person who owns the repository; and - <REPO_NAME>
with the name of your project’s repository.

If you haven’t put your code in a Git repository, you can clone the version we have made, by issuing
the following command:

16:54 ~ $ git clone https://github.com/leifos/tango_with_django_19.git

Setting Up the Database

With your files cloned, you must then prepare your database. We’ll be using the populate_rango.py
module that we created earlier in the book. Aswe’ll be running themodule, youmust ensure that you
are using the rango virtual environment (i.e. you see (rango) as part of your prompt - if not, invoke
workon rango). From your home directory, move into the tango_with_django_19 directory, then to
the code directory. Finally, cd into the directory with manage.py in it - tango_with_django_project.
Now issue the following commands.

www.tangowithdjango.com

Deploying Your Project 220

(rango) 16:55 ~/tango_with_django $ python manage.py makemigrations rango

(rango) 16:55 ~/tango_with_django $ python manage.py migrate

(rango) 16:56 ~/tango_with_django $ python populate_rango.py

(rango) 16:57 ~/tango_with_django $ python manage.py createsuperuser

As discussed earlier in the book, the first command creates the migrations for the rango app, then
the migrate command creates the SQLlite3 database. Once the database is created, the database can
be populated and a superuser created.

19.4 Setting up Your Web Application

Now that the database is setup, we need to configure the PythonAnywhere NGINX Web server to
serve up your application. Within PythonAnywhere’s Web interface, navigate to your dashboard
and click on theWeb tab. On the left of the page that appears, click Add a new web app.

A popup box will then appear. Follow the instructions on-screen, and when the time comes, select
the manual configuration option and complete the wizard. Make sure you select the same Python
version as the one you selected earlier.

In a new tab or window in your Web browser, go visit your PythonAnywhere subdomain at the
address http://<username>.pythonanywhere.com. You should be presented with the default Hello,
World! webpage, as shown below. This is because the WSGI script is currently serving up this page,
and not your Django application. This is what we need to change next.

The default PythonAnywhere hello world webpage.

www.tangowithdjango.com

https://www.nginx.com/resources/wiki/

Deploying Your Project 221

Configure the Virtual Environment

To set the virtual environment for your app, navigate to the Web tab in PythonAnywhere’s
dashboard. From there, scroll all the way down under you see the heading Virtualenv.

Enter in the path to your virtual environment. Assuming you created a virtual environment called
rango the path would be:

/home/<username>/.virtualenvs/rango

You can start a console to check if it is successful.

Now in the Code section, you can set the path to your web applications source code.

/home/<username>/<path-to>/tango_with_django_project/

If you have checked out code from our GitHub account, then the path will be something like:

/home/<username>/tango_with_django_19/code/tango_with_django_project/

Configuring the WSGI Script

The Web Server Gateway Interface, a.k.a. WSGI provides a simple and universal interface between
Web servers and Web applications. PythonAnywhere uses WSGI to bridge the server-application
link and map incoming requests to your subdomain to your web application.

To configure the WSGI script, navigate to theWeb tab in PythonAnywhere’s dashboard. From there,
click the Web tab. Under the Code heading you can see a link to the WSGI configuration file in the
Code section: e.g. /var/www/<username>_pythonanywhere_com_wsgi.py

The good people at PythonAnywhere have set up a sample WSGI file for us with several possible
configurations. For your Web application, you’ll need to configure the Django section of the file.
The example below demonstrates a possible configuration for your application.

import os

import sys

Add your project's directory the PYTHONPATH

path = '/home/<username>/<path-to>/tango_with_django_project/'

if path not in sys.path:

sys.path.append(path)

Move to the project directory

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Deploying Your Project 222

os.chdir(path)

Tell Django where the settings.py module is located

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'tango_with_django_project.settings')

Import your Django project's configuration

import django

django.setup()

Import the Django WSGI to handle any requests

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

Ensure that you replace <username> with your PythonAnywhere username, and update any other
path settings to suit your application. You should also remove all other code from the WSGI
configuration script to ensure no conflicts take place.

The script adds your project’s directory to the PYTHONPATH for the Python instance that runs your
web application. This allows Python to access your project’s modules. If you have additional paths to
add, you can easily insert them here. You can then specify the location of your project’s settings.py
module. The final step is to include the Django WSGI handler and invoke it for your application.

When you have completed the WSGI configuration, click the Save button at the top-right of the
webpage. Navigate back to the Web tab within the PythonAnywhere dashboard, and click the
Reload button at the top of the page. When the application is reloaded, you can then revisit your
PythonAnywhere subdomain at http://<username>.pythonanywhere.com. Hopefully, if all went
well, you should see your application up and running. If not, check through your scripts and paths
carefully. Double check your paths by actually visiting the directories, and use pwd to confirm the
path.

Bad Gateway Errors
During testing, we noted that you can sometimes receive HTTP 502 - Bad Gateway errors
instead of your application. Try reloading your application again, and thenwaiting a longer.
If the problem persists, try reloading again. If the problem still persists, check out your log
files to see if any accesses/errors are occurring, before contacting the PythonAnywhere
support.

Assigning Static Paths

We’re almost there. One issue that we still have to address is to sort out paths for our application.
Doing so will allow PythonAnywhere’s servers to serve your static content, for example From the

www.tangowithdjango.com

Deploying Your Project 223

PythonAnywhere dashboard, click theWeb tab and choose the subdomain hosting your application
from the list on the left.

Underneath the Static files header, perform the following.

Click the Enter path text. Set this to (all on one line):

/home/<username>/.virtualenvs/rango/lib/<python-version>/site-packages/django/

contrib/admin/static/admin

where <username> should be replaced with your PythonAnywhere username. <python-version>
should also be replaced with python2.7, python3.4, etc., depending on which Python version
you selected. You may also need to change rango if this is not the name of your application’s
virtual environment. Remember to hit return to confirm the path. Then click Enter URL and enter
/static/admin, followed by hitting return.

Repeat the two steps above for the URL /static/ and path /home/<username>/<path-to>/tango_-

with_django_project/static, with the path setting pointing to the static directory of your Web
application.

With these changes saved, reload your web application by clicking the Reload button at the top
of the page. Don’t forget the about potential for HTTP 502 - Bad Gateway errors. Setting the static
folders means that when you visit the admin interface, it has the predefined Django style sheets, and
that you can access images and scripts. Reload your Web application, and you should now notice
that your images are present.

Bing API Key

Add your Bing API key to bing.key to enable the search functionality in Rango.

Turning off DEBUGMode

When you application is ready to go, it’s a good idea to instruct Django that your application is now
hosted on a production server. To do this, open your project’s settings.py file and change DEBUG =

True to DEBUG = False. This disables Django’s debug mode, and removes explicit error messages.

Changing the value of DEBUG also means you should set the ALLOWED_HOSTS property. Failing to
perform this step will make Django return HTTP 400 Bad Request errors. Alter ALLOWED_HOSTS so
that it includes your PythonAnywhere subdomain like in the example below.

ALLOWED_HOSTS = ['<username>.pythonanywhere.com']

Again, ensure <username> is changed to your PythonAnywhere username. Once complete, save the
file and reload the application via the PythonAnywhere Web interface.

www.tangowithdjango.com

https://docs.djangoproject.com/en/1.9/ref/settings/#debug

Deploying Your Project 224

19.5 Log Files

Deploying your Web application to an online environment introduces another layer of complexity.
It is likely that you will encounter new and bizarre errors due to unsuspecting problems. When
facing such errors, vital clues may be found in one of the three log files that the Web server on
PythonAnywhere creates.

Log files can be viewed via the PythonAnywhere web interface by clicking on the Web tab, or by
viewing the files in /var/log/ within a Bash console instance. The files provided are:

• access.log, which provides a log of requests made to your subdomain;
• error.log, which logs any error messages produced by your web application; and
• server.log, providing log details for the UNIX processes running your application.

Note that the names for each log file are prepended with your subdomain. For example, access.log
will have the name <username>.pythonanywhere.com.access.log.

When debugging, you may find it useful to delete or move the log files so that you don’t have to
scroll through a huge list of previous attempts. If the files are moved or deleted, they will be recreated
automatically when a new request or error arises.

Exercises
Congratulations, you’ve successfully deployed Rango!

• Tweet a link of your application to @tangowithdjango.
• Tweet or e-mail us to let us know your thoughts on the tutorial!

www.tangowithdjango.com

https://twitter.com/tangowithdjango

20. Final Thoughts
In this book, we have gone through the process of web development from specification to
deployment. Along the way we have shown how to use the Django framework to construct the
models, views and templates associated with a web application. We have also demonstrated how
toolkits and services like Bootstrap, JQuery, Bing Search, PythonAnywhere, etc. can be integrated
within an application. However, the road doesn’t stop here.While, as we have only painted the broad
brush strokes of a web application - as you have probably noticed there are lots of improvements
that could be made to Rango - and these finer details often take a lot more time to complete as you
polish the application. By developing your application on a firm base and good setup you will be
able to construct up to 80% of your site very rapidly and get a working demo online.

In future versions of this book we intend to provide some more details on various aspects of the
framework, along with covering the basics of some of the other fundamental technologies associated
with web development. If you have any suggestions or comments about how to improve the book
please get in touch.

Please report any bugs, problems, etc., or submit change requests via GitHub. Thank you!

20.1 Acknowledgements

This book was written to help teach web application development to computing science students. In
writing the book and the tutorial, we have had to rely upon the awesome Django community and
the Django Documentation for the answers and solutions. This book is really the combination of
that knowledge pieced together in the context of building Rango.

We would also like to thank all the people who have helped to improve this resource by sending us
comments, suggestions, Git issues and pull requests. If you’ve sent in changes over the years, please
do remind us if you are not on the list!

Adam Kikowski, Adam Mertz, Ally Weir, bernieyangmh, Breakerfall, Brian, Burak K., Burak
Karaboga, Can Ibanoglu, Charlotte , Claus Conrad, Codenius, cspollar, Dan C, Darius, David
Manlove, Devin Fitzsimons, Dhiraj Thakur, Duncan Drizy, Giles T., Gerardo A-C, Grigoriy M,
James Yeo, Jan Felix Trettow, Joe Maskell, Jonathan Sundqvist, Karen Little, Kartik Singhal,
koviusesGitHub,Krace Kumar,ManoelMaria,Martin de G.,Matevz P.,mHulb,Michael Herman,
Michael Ho Chum, Mickey P., Mike Gleen, nCrazed, Nitin Tulswani, nolan-m, Oleg Belausov,
pawonfire, pdehaye, Peter Mash, Pierre-Yves Mathieu, Praestgias, pzkpfwVI, Ramdog, Rezha
Julio, rnevius, Sadegh Kh, Saex, Saurabh Tandon, Serede Sixty Six, Svante Kvarnstrom, Tanmay
Kansara, Thomas Murphy, Thomas Whyyou,William Vincent, and Zhou.

Thank you all very much!

https://github.com/leifos/tango_with_django_19/
https://github.com/Amertz08
https://github.com/bernieyangmh
https://github.com/breakerfall
https://github.com/flycal6
https://github.com/McMutton
https://github.com/canibanoglu
https://github.com/Charlotteis
https://github.com/cconrad
https://twitter.com/Codenius
https://github.com/cspollar
https://github.com/dariushazimi
https://github.com/aisflat439
https://github.com/dhirajt
https://github.com/gpjt
https://github.com/gerac83
https://github.com/GriMel
https://tiwtter.com/JanFelixTrettow
https://github.com/jonathan-s
https://github.com/k4rtik
https://github.com/koviusesGitHub
https://github.com/kracekumar
https://twitter.com/xmadruga157
https://github.com/martindegroot
https://github.com/matonsjojc
https://github.com/mHulb
https://github.com/mjhea0
https://github.com/michaelchum
https://github.com/mickeypash
https://github.com/nCrazed
https://github.com/nolan-m
https://github.com/pawonfire
https://github.com/pdehaye
https://github.com/PeterMash
https://github.com/pywebdesign
https://github.com/praestigias
https://github.com/pzkpfwVI
https://github.com/ramdog
https://github.com/kimiamania
https://github.com/kimiamania
https://github.com/rnevius
https://github.com/SaeX
https://twitter.com/saurabhtand
https://twitter.com/thomaswhyyou
https://github.com/AugustLONG

Appendices

Setting up your System
This chapter provides a brief overview of the different components that you need to have working
in order to develop Django apps.

Choosing a Python Version
Django supports both the Python 2.7.x and 3 programming languages. While they both
share the same name, they are fundamentally different programming languages. In this
chapter, we assume you are setting up Python 2.7.5 - you can change the version number
as you require.

Installing Python

So, how do you go about installing Python 2.7/3.4 on your computer? You may already have Python
installed on your computer - and if you are using a Linux distribution or OS X, you will definitely
have it installed. Some of your operating system’s functionality is implemented in Python, hence
the need for an interpreter!

Unfortunately, nearly all modern operating systems utilise a version of Python that is older than
what we require for this tutorial. There’s many different ways in which you can install Python,
and many of them are sadly rather tricky to accomplish. We demonstrate the most commonly used
approaches, and provide links to additional reading for more information.

Do not remove your default Python installation
This section will detail how to run Python 2.7.5 alongside your current Python installation.
It is regarded as poor practice to remove your operating system’s default Python installation
and replace it with a newer version. Doing so could render aspects of your operating
system’s functionality broken!

Apple mac OS/OS X

The most simple way to get Python 2.7.5 installed on your Mac is to download and run the simple
installer provided on the official Python website. You can download the installer by visiting the
webpage at http://www.python.org/getit/releases/2.7.5/.

http://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified
http://www.python.org/getit/releases/2.7.5/

Setting up your System 228

Make sure you have the correct version for your Mac
Ensure that you download the .dmg file that is relevant to your particular mac OS/OS X
installation!

1. Once you have downloaded the .dmg file, double-click it in the Finder.
2. The file mounts as a separate disk and a new Finder window is presented to you.
3. Double-click the file Python.mpkg. This will start the Python installer.
4. Continue through the various screens to the point where you are ready to install the software.

You may have to provide your password to confirm that you wish to install the software.
5. Upon completion, close the installer and eject the Python disk. You can now delete the

downloaded .dmg file.

You should now have an updated version of Python installed, ready for Django! Easy, huh? You can
also install Python 3.4+ in a similar version, if you prefer to use Python 3.

Linux Distributions

Unfortunately, there aremany different ways inwhich you can download, install and run an updated
version of Python on your Linux distribution. To make matters worse, methodologies vary from
distribution to distribution. For example, the instructions for installing Python on Fedora may differ
from those to install it on an Ubuntu installation.

However, not all hope is lost. An awesome tool (or a Python environment manager) called
pythonbrew can help us address this difficulty. It provides an easy way to install and manage
different versions of Python, meaning you can leave your operating system’s default Python
installation alone.

Taken from the instructions provided from the pythonbrew GitHub page and this Stack Overflow
question and answer page, the following steps will install Python 2.7.5 on your Linux distribution.

1. Open a new terminal instance.
2. Run the command curl -kL http://xrl.us/pythonbrewinstall | bash. This will down-

load the installer and run it within your terminal for you. This installs pythonbrew into the
directory ∼/.pythonbrew. Remember, the tilde (∼) represents your home directory!

3. You then need to edit the file∼/.bashrc. In a text editor (such as gedit, nano, vi or emacs), add
the following to a new line at the end of ∼/.bashrc: [[-s $HOME/.pythonbrew/etc/bashrc

]] && source $HOME/.pythonbrew/etc/bashrc

4. Once you have saved the updated ∼/.bashrc file, close your terminal and open a new one.
This allows the changes you make to take effect.

5. Run the command pythonbrew install 2.7.5 to install Python 2.7.5.

www.tangowithdjango.com

http://fedoraproject.org/
http://www.ubuntu.com/
https://github.com/utahta/pythonbrew
https://github.com/utahta/pythonbrew
http://stackoverflow.com/questions/5233536/python-2-7-on-ubuntu
http://stackoverflow.com/questions/5233536/python-2-7-on-ubuntu

Setting up your System 229

6. You then have to switch Python 2.7.5 to the active Python installation. Do this by running the
command pythonbrew switch 2.7.5.

7. Python 2.7.5 should now be installed and ready to go.

Hidden Directories and Files
Directories and files beginning with a period or dot can be considered the equivalent of
hidden files inWindows. Dot files are not normally visible to directory-browsing tools, and
are commonly used for configuration files. You can use the ls command to view hidden
files by adding the -a switch to the end of the command, giving the command ls -a.

Windows

By default, Microsoft Windows comes with no installations of Python. This means that you do not
have to worry about leaving existing versions be; installing from scratch should work just fine. You
can download a 64-bit or 32-bit version of Python from the official Python website. If you aren’t
sure which one to download, you can determine if your computer is 32-bit or 64-bit by looking at
the instructions provided on the Microsoft website.

1. When the installer is downloaded, open the file from the location to which you downloaded
it.

2. Follow the on-screen prompts to install Python.
3. Close the installer once completed, and delete the downloaded file.

Once the installer is complete, you should have a working version of Python ready to go. By default,
Python 2.7.5 is installed to the folder C:\Python27. We recommend that you leave the path as it is.

Upon the completion of the installation, open a Command Prompt and enter the command python.
If you see the Python prompt, installation was successful. However, in certain circumstances, the
installer may not set your Windows installation’s PATH environment variable correctly. This will
result in the python command not being found. UnderWindows 7, you can rectify this by performing
the following:

1. Click the Start button, right click My Computer and select Properties.
2. Click the Advanced tab.
3. Click the Environment Variables button.
4. In the System variables list, find the variable called Path, click it, then click the Edit button.
5. At the end of the line, enter ;C:\python27;C:\python27\scripts. Don’t forget the semicolon

- and certainly do not add a space.
6. Click OK to save your changes in each window.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Dot-file
http://www.python.org/download/
http://windows.microsoft.com/en-gb/windows7/32-bit-and-64-bit-windows-frequently-asked-questions

Setting up your System 230

7. Close any Command Prompt instances, open a new instance, and try run the python command
again.

This should get your Python installation fully working. Things might differ ever so slightly on
Windows 10.

Setting Up the PYTHONPATH

With Python now installed, we now need to check that the installation was successful. To do this, we
need to check that the PYTHONPATH environment variable is setup correctly. PYTHONPATH provides the
Python interpreter with the location of additional Python packages and modules which add extra
functionality to the base Python installation. Without a correctly set PYTHONPATH, we’ll be unable to
install and use Django!

First, let’s verify that our PYTHONPATH variable exists. Depending on the installation technique that
you chose, this may or may not have been done for you. To do this on your UNIX-based operating
system, issue the following command in a terminal.

$ echo $PYTHONPATH

On a Windows-based machine, open a Command Prompt and issue the following.

$ echo %PYTHONPATH%

If all works, you should then see output that looks something similar to the example below. On a
Windows-based machine, you will obviously see a Windows path, most likely originating from the
C drive.

/opt/local/Library/Frameworks/Python.framework/

Versions/2.7/lib/python2.7/site-packages:

This is the path to your Python installation’s site-packages directory, where additional Python
packages and modules are stored. If you see a path, you can continue to the next part of this tutorial.
If you however do not see anything, you’ll need to do a little bit of detective work to find out the path.
On aWindows installation, this should be a trivial exercise: site-packages is located within the lib
folder of your Python installation directory. For example, if you installed Python to C:\Python27,
site-packages will be at C:\Python27\Lib\site-packages\.

UNIX-based operating systems however require a little bit of detective work to discover the path of
your site-packages installation. To do this, launch the Python interpreter. The following terminal
session demonstrates the commands you should issue.

www.tangowithdjango.com

http://stackoverflow.com/a/14224786
http://stackoverflow.com/a/14224786
http://en.wikipedia.org/wiki/Environment_variable
http://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package

Setting up your System 231

$ python

Python 2.7.5 (v2.7.5:ab05e7dd2788, May 13 2013, 13:18:45)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import site

>>> print(site.getsitepackages()[0])

'/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages'

>>> quit()

Calling site.getsitepackages() returns a list of paths that point to additional Python package and
module stores. The first typically returns the path to your site-packages directory - changing the
list index position may be required depending on your installation. If you receive an error stating
that getsitepackages() is not present within the site module, verify you’re running the correct
version of Python. Version 2.7.5 should include this function. Previous versions of the language do
not include this function.

The string which is shown as a result of executing print site.getsitepackages()[0] is the path
to your installation’s site-packages directory. Taking the path, we now need to add it to your
configuration. On a UNIX-based or UNIX-derived operating system, edit your .bashrc file once
more, adding the following to the bottom of the file.

export PYTHONPATH=$PYTHONPATH:<PATH_TO_SITE-PACKAGES>

Replace <PATH_TO_SITE-PACKAGES> with the path to your site-packages directory. Save the file,
and quit and reopen any instances of your terminal.

On a Windows-based computer, you must follow the instructions shown above to bring up the
environment variables settings dialog. Add a PYTHONPATH variable with the value being set to your
site-packages folder, which is typically C:\Python27\Lib\site-packages\.

Using setuptools and pip

Installing and setting up your development environment is a really important part of any project.
While it is possible to install Python Packages such as Django separately, this can lead to numerous
problems and hassles later on. For example, how would you share your setup with another
developer? How would you set up the same environment on your new machine? How would you
upgrade to the latest version of the package? Using a package manager removes much of the hassle
involved in setting up and configuring your environment. It will also ensure that the package you

www.tangowithdjango.com

Setting up your System 232

install is the correct for the version of Python you are using, along with installing any other packages
that are dependent upon the one you want to install.

In this book, we use pip. pip is a user friendly wrapper over the setuptools Python package
manager. Because pip depends on setuptools, we are required to ensure that both are installed
on your computer.

To start, we should download setuptools from the official Python package website. You can
download the package in a compressed .tar.gz file. Using your favourite file extracting program,
extract the files. They should all appear in a directory called setuptools-1.1.6 - where 1.1.6

represents the setuptools version number. From a terminal instance, you can then change into
the directory and execute the script ez_setup.py as shown below.

$ cd setuptools-1.1.6

$ sudo python ez_setup.py

In the example above, we also use sudo to allow the changes to become system wide. The second
command should install setuptools for you. To verify that the installation was successful, you
should be able to see output similar to that shown below.

Finished processing dependencies for setuptools==1.1.6

Of course, 1.1.6 is substituted with the version of setuptools you are installing. If this line can
be seen, you can move onto installing pip. This is a trivial process, and can be completed with one
simple command. From your terminal instance, enter the following.

$ sudo easy_install pip

This command should download and install pip, again with system wide access. You should see the
following output, verifying pip has been successfully installed.

Finished processing dependencies for pip

Upon seeing this output, you should be able to launch pip from your terminal. To do so, just type
pip. Instead of an unrecognised command error, you should be presented with a list of commands
and switches that pip accepts. If you see this, you’re ready to move on!

No Sudo on Windows!
On Windows computers, follow the same basic process. You won’t need to enter the sudo
command, however.

www.tangowithdjango.com

https://pypi.python.org/pypi/setuptools/1.1.6

Setting up your System 233

Virtual Environments

We’re almost all set to go! However, before we continue, it’s worth pointing out that while this setup
is fine to begin with, there are some drawbacks. What if you had another Python application that
requires a different version to run? Or you wanted to switch to the new version of Django, but still
wanted to maintain your Django 1.7 project?

The solution to this is to use virtual environments. Virtual environments allowmultiple installations
of Python and their relevant packages to exist in harmony. This is the generally accepted approach
to configuring a Python setup nowadays. They are pretty easy to setup, once you have pip installed,
and you know the right commands. You need to install a couple of additional packages.

$ pip install virtualenv

$ pip install virtualenvwrapper

The first package provides you with the infrastructure to create a virtual environment. See a non-
magical introduction to pip and Virtualenv for Python Beginners by Jamie Matthews for details
about using virtualenv. However, using just virtualenv alone is rather complex. The second package
provides a wrapper to the functionality in the virtualenv package and makes life a lot easier.

If you are using a Linux/UNIX based OS, then to use the wrapper you need to call the following
shell script from your command line: :

$ source virtualenvwrapper.sh

It is a good idea to add this to your bash/profile script. So you don’t have to run it each and every
time you want to use virtual environments. However, if you are using windows, then install the
virtualenvwrapper-win package:

$ pip install virtualenvwrapper-win

Now you should be all set to create a virtual environment:

$ mkvirtualenv rango

You can list the virtual environments created with lsvirtualenv, and you can activate a virtual
environment as follows:

$ workon rango

(rango)$

Your prompt with change and the current virtual environment will be displayed, i.e. rango. Now
within this environment you will be able to install all the packages you like, without interfering
with your standard or other environments. Try pip list to see you don’t have Django or Pillow
installed in your virtual environment. You can now install them with pip so that they exist in your
virtual environment.

www.tangowithdjango.com

http://simononsoftware.com/virtualenv-tutorial/
http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
http://dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://pypi.python.org/pypi/virtualenvwrapper-win

Setting up your System 234

Version Control

We should also point out that when you develop code, you should always house your code within
a version controlled repository such as SVN or Git. We have provided a chapter on using Git if you
haven’t used Git and GitHub before. We highly recommend that you set up a Git repository for your
own projects. Doing so could save you from disaster.

Exercises
To get comfortable with your environment, try out the following exercises.

• Install Python 2.7.5+ or Python 3.4+ and pip.
• Play aroundwith your CLI and create a directory called code, which we use to create
our projects in.

• Install the Django and Pillow packages.
• Setup your Virtual Environment
• Setup your account on GitHub
• Download and setup a Integrated Development Environment like PyCharm Edu.
• We have made the code for the book and application that you build available on
GitHub, see Tango With Django Book and Rango Application.

• If you spot any errors or problem with the book, you can make a change request!
• If you have any problems with the exercises, you can check out the repository and
see how we completed them.

www.tangowithdjango.com

http://subversion.tigris.org/
http://git-scm.com/
https://www.jetbrains.com/pycharm-edu/download/
https://github.com/leifos/tango_with_django_book
https://github.com/leifos/tango_with_django

A Crash Course in UNIX-based
Commands
Depending on your computing background, you may or may not have encountered a UNIX based
system, or a derivative of. This small crash course focuses on getting you up to speed with the
terminal, an application in which you issue commands for the computer to execute. This differs from
a point-and-click Graphical User Interface (GUI), the kind of interface that has made computing so
much more accessible. A terminal based interface may be more complex to use, but the benefits of
using such an interface include getting things done quicker, and more accurately, too.

Not for Windows!
Note that we’re focusing on the Bash shell, a shell for UNIX-based operating systems and
their derivatives, including OS X and Linux distributions. If you’re a Windows user, you
can use the Windows Command Prompt or Windows PowerShell. Users of Windows 10
with the 2016 Anniversary Update will also be able to issue Bash commands directly to
the Command Prompt. You could also experiment by installing Cygwin to bring Bash
commands to Windows.

Using the Terminal

UNIX based operating systems and derivatives - such as OS X and Linux distributions - all use
a similar looking terminal application, typically using the Bash shell. All possess a core set of
commands that allow you to navigate through your computer’s filesystem and launch programs
- all without the need for any graphical interface.

Upon launching a new terminal instance, you’ll be typically presented with something resembling
the following.

sibu:~ david$

What you see is the prompt, and indicates when the system is waiting to execute your every
command. The prompt you see varies depending on the operating system you are using, but all look
generally very similar. In the example above, there are three key pieces of information to observe:

• your username and computer name (username of david and computer name of sibu);

http://www.ai.uga.edu/mc/winforunix.html
https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
https://blogs.windows.com/windowsexperience/2016/08/02/how-to-get-the-windows-10-anniversary-update/
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html
http://www.pcworld.com/article/3050473/windows/heres-how-windows-10s-ubuntu-based-bash-shell-will-actually-work.html
https://www.cygwin.com/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

A Crash Course in UNIX-based Commands 236

• your present working directory (the tilde, or ∼); and
• the privilege of your user account (the dollar sign, or $).

What is a Directory?
In the text above, we refer to your present working directory. But what exactly is a
directory? If you have used a Windows computer up until now, you’ll probably know a
directory as a folder. The concept of a folder is analogous to a directory - it is a cataloguing
structure that contains references to other files and directories.

The dollar sign ($) typically indicates that the user is a standard user account. Conversely, a hash
symbol (#) may be used to signify the user logged in has root privileges. Whatever symbol is present
is used to signify that the computer is awaiting your input.

Prompts can Differ
The information presented by the prompt on your computer may differ from the example
shown above. For example, some prompts may display the current date and time, or any
other information. It all depends how your computer is set up.

When you are using the terminal, it is important to know where you are in the file system. To find
out where you are, you can issue the command pwd. This will display your PresentWorking Directory
(hence pwd). For example, check the example terminal interactions below.

Last login: Wed Mar 23 15:01:39 2016

sibu:~ david$ pwd

/users/grad/david

sibu:~ david$

You can see that the present working directory in this example is /users/grad/david.

You’ll also note that the prompt indicates that the present working directory is a tilde∼. The tilde is
used a special symbol which represents your home directory. The base directory in any UNIX based
file system is the root directory. The path of the root directory is denoted by a single forward slash
(/). As folders (or directories) are separated in UNIX paths with a /, a single / denotes the root!

If you are not in your home directory, you can Change Directory (cd) by issuing the following
command:

sibu:/ david$ cd ~

sibu:~ david$

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Superuser

A Crash Course in UNIX-based Commands 237

Note how the present working directory switches from / to ∼ upon issuing the cd ∼ command.

Path Shortcuts
UNIX shells have a number of different shorthand ways for you to move around your
computer’s filesystem. You’ve already seen that a forward slash (/) represents the root
directory, and the tilde (∼) represents your home directory in which you store all your
personal files. However, there are a fewmore special characters you can use tomove around
your filesystem in conjunction with the cd command.

• Issuing cd ∼ will always return you to your home directory. On some UNIX or
UNIX derivatives, simply issuing cd will return you to your home directory, too.

• Issuing cd ..will move your present working directory up one level of the filesys-
tem hierarchy. For example, if you are currently in /users/grad/david/code/,
issuing cd .. will move you to /users/grad/david/.

• Issuing cd - will move you to the previous directory you were working in.
Your shell remembers where you were, so if you were in /var/tmp/ and moved
to /users/grad/david/, issuing cd - will move you straight back to /var/tmp/.
This command obviously only works if you’ve move around at least once in a given
terminal session.

Now, let’s create a directory within the home directory called code. To do this, you can use theMake
Directory command, called mkdir.

sibu:~ david$ mkdir code

sibu:~ david$

There’s no confirmation that the command succeeded. We can change the present working directory
with the cd command to change to code. If this succeeds, we will know the directory has been
successfully created.

sibu:~ david$ cd code

sibu:code david$

Issuing a subsequent pwd command to confirm our present working directory yields /users/grad/-
david/code - our home directory, with code appended to the end. You can also see from the prompt
in the example above that the present working directory changes from ∼ to code.

Change Back
Now issue the command to change back to your home directory. What command do you
enter?

www.tangowithdjango.com

https://en.wikipedia.org/wiki/Root_directory
https://en.wikipedia.org/wiki/Root_directory

A Crash Course in UNIX-based Commands 238

From your home directory, let’s now try out another command to see what files and directories
exist. This new command is called ls, shorthand for list. Issuing ls in your home directory will
yield something similar to the following.

sibu:~ david$ ls

code

This shows us that there’s something present our home directory called code, as we would expect.
We can obtain more detailed information by adding a l switch to the end of the ls command - with
l standing for list.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

This provides us with additional information, such as the modification date (2 Apr 11:07), whom
the file belongs to (user david of group grad), the size of the entry (68 bytes), and the file permissions
(drwxr-xr-x). While we don’t go into file permissions here, the key thing to note is the d at the start
of the string that denotes the entry is a directory. If we then add some files to our home directory
and reissue the ls -l command, we then can observe differences in the way files are displayed as
opposed to directories.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

One final useful switch to the ls command is the a switch, which displays all files and directories.
This is useful because some directories and files can be hidden by the operating system to keep things
looking tidy. Issuing the command yields more files and directories!

sibu:~ david$ ls -la

-rw-r--r-- 1 david grad 463 20 Feb 19:58 .profile

drwxr-xr-x 16 david grad 544 25 Mar 11:39 .virtualenvs

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

This command shows a hidden directory .virtualenvs and a hidden file .profile. Note that hidden
files on a UNIX based computer (or derivative) start with a period (.). There’s no special hidden file
attribute you can apply, unlike on Windows computers.

www.tangowithdjango.com

A Crash Course in UNIX-based Commands 239

Combining ls Switches
You may have noticed that we combined the l and a switches in the above ls example to
force the command to output a list displaying all hidden files. This is a valid command -
and there are even more switches you can use to customise the output of ls.

Creating files is also easy to do, straight from the terminal. The touch command creates a new, blank
file. If we wish to create a file called new.txt, issue touch new.txt. If we then list our directory, we
then see the file added.

sibu:~ david$ ls -l

drwxr-xr-x 2 david grad 68 2 Apr 11:07 code

-rw-r--r--@ 1 david grad 303844 1 Apr 16:16 document.pdf

-rw-r--r-- 1 david grad 0 2 Apr 11:35 new.txt

-rw-r--r-- 1 david grad 14 2 Apr 11:14 readme.md

Note the filesize of new.txt - it is zero bytes, indicating an empty file. We can start editing the
file using one of the many available text editors that are available for use directly from a terminal,
such as nano or vi. While we don’t cover how to use these editors here, you can have a look online
for a simple how-to tutorial. We suggest starting with nano - while there are not as many features
available compared to other editors, using nano is much simpler.

Core Commands

In the short tutorial above, you’ve covered a few of the core commands such as pwd, ls and cd. There
are however a few more standard UNIX commands that you should familiarise yourself with before
you start working for real. These are listed below for your reference, with most of them focusing
upon file management. The list comes with an explanation of each, and an example of how to use
them.

• pwd: As explained previously, this command displays your present working directory to the
terminal. The full path of where you are presently is displayed.

• ls: Displays a list of files in the current working directory to the terminal.
• cd: In conjunction with a path, cd allows you to change your present working directory. For
example, the command cd /users/grad/david/ changes the current working directory to
/users/grad/david/. You can also move up a directory level without having to provide the
absolute path by using two dots, e.g. cd ...

• cp: Copies files and/or directories. You must provide the source and the target. For example,
to make a copy of the file input.py in the same directory, you could issue the command cp

input.py input_backup.py.

www.tangowithdjango.com

http://man7.org/linux/man-pages/man1/ls.1.html
http://www.nano-editor.org/
http://en.wikipedia.org/wiki/Vi
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://www.uvsc.edu/disted/decourses/dgm/2120/IN/steinja/lessons/06/06_04.html

A Crash Course in UNIX-based Commands 240

• mv: Moves files/directories. Like cp, you must provide the source and target. This command
is also used to rename files. For example, to rename numbers.txt to letters.txt, issue
the command mv numbers.txt letters.txt. To move a file to a different directory, you
would supply either an absolute or relative path as part of the target - like mv numbers.txt

/home/david/numbers.txt.
• mkdir: Creates a directory in your current working directory. You need to supply a name
for the new directory after the mkdir command. For example, if your current working
directory was /home/david/ and you ran mkdir music, you would then have a directory
/home/david/music/. You will need to then cd into the newly created directory to access
it.

• rm: Shorthand for remove, this command removes or deletes files from your filesystem. You
must supply the filename(s) you wish to remove. Upon issuing a rm command, you will be
prompted if you wish to delete the file(s) selected. You can also remove directories using the
recursive switch. Be careful with this command - recovering deleted files is very difficult, if
not impossible!

• rmdir: An alternative command to remove directories from your filesystem. Provide a
directory that you wish to remove. Again, be careful: you will not be prompted to confirm
your intentions.

• sudo: A program which allows you to run commands with the security privileges of another
user. Typically, the program is used to run other programs as root - the superuser of any
UNIX-based or UNIX-derived operating system.

There’s More!
This is only a brief list of commands. Check out Ubuntu’s documentation on Using the
Terminal for a more detailed overview, or the Cheat Sheet by FOSSwire for a quick, handy
reference guide. Like anything else, the more you practice, the more comfortable you will
feel working with the terminal.

www.tangowithdjango.com

http://www.computerhope.com/issues/ch000798.htm
http://www.computerhope.com/issues/ch000798.htm
http://en.wikipedia.org/wiki/Superuser
https://help.ubuntu.com/community/UsingTheTerminal
https://help.ubuntu.com/community/UsingTheTerminal
http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

A Git Crash Course
We strongly recommend that you spend some time familiarising yourself with a version control
system for your application’s codebase. This chapter provides you with a crash course in how to
use Git, one of the many version control systems available. Originally developed by Linus Torvalds,
Git is today one of the most popular version control systems in use, and is used by open-source and
closed-source projects alike.

This tutorial demonstrates at a high level how Git works, explains the basic commands that you
can use, and provides an explanation of Git’s workflow. By the end of this chapter, you’ll be able to
make contributions to a Git repository, enabling you to work solo, or in a team.

Why Use Version Control?

As your software engineering skills develop, you will find that you are able to plan and implement
solutions to ever more complex problems. As a rule of thumb, the larger the problem specification,
the more code you have to write. The more code you write, the greater the emphasis you should put
on software engineering practices. Such practices include the use of design patterns and the DRY
(Don’t Repeat Yourself) principle.

Think about your experiences with programming thus far. Have you ever found yourself in any of
these scenarios?

• Made a mistake to code, realised it was a mistake and wanted to go back?
• Lost code (through a faulty drive), or had a backup that was too old?
• Had to maintain multiple versions of a product (perhaps for different organisations)?
• Wanted to see the difference between two (or more) versions of your codebase?
• Wanted to show that a particular change broke of fixed a piece of code?
• Wanted to submit a change (patch) to someone else’s code?
• Wanted to see how much work is being done (where it was done, when it was done, or who
did it)?

Using a version control system makes your life easier in all of the above cases. While using version
control systems at the beginning may seem like a hassle it will pay off later - so it’s good to get into
the habit now!

We missed one final (and important) argument for using version control. With ever more complex
problems to solve, your software projects will undoubtedly contain a large number of files containing
source code. It’ll also be likely that you aren’t working alone on the project; your project will probably
have more than one contributor. In this scenario, it can become difficult to avoid conflicts when
working on files.

https://en.wikipedia.org/wiki/Version_control
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities#Popularity

A Git Crash Course 242

How Git Works

Essentially, Git comprises of four separate storage locations: your workspace, the local index, the
local repository and the remote repository. As the name may suggest, the remote repository is
stored on some remote server, and is the only location stored on a computer other than your own.
This means that there are two copies of the repository - your local copy, and the remote copy. Having
two copies is one of the main selling points of Git over other version control systems. You can make
changes to your local repository when youmay not have Internet access, and then apply any changes
to the remote repository at a later stage. Only once changes are made to the remote repository can
other contributors see your changes.

What is a Repository?
We keep repeating the word repository, but what do we actually mean by that? When
considering version control, a repository is a data structure which contains metadata (a set
of data that describes other data, hence meta) concerning the files which you are storing
within the version control system. The kind of metadata that is stored can include aspects
such as the historical changes that have taken place within a given file, so that you have a
record of all changes that take place.

If you want to learn more about the metadata stored by Git, there is a technical tutorial
available for you to read through.

For now though, let’s provide an overview of each of the different aspects of the Git system. We’ll
recap some of the things we’ve already mentioned just to make sure it makes sense to you.

• As already explained, the remote repository is the copy of your project’s repository stored
on some remote server. This is particularly important for Git projects that have more than one
contributor - you require a central place to store all the work that your teammembers produce.
You could set up a Git server on a computer with Internet access and a properly configured
firewall (check out this Git server tutorial, for example), or simply use one of many services
providing free Git repositories. One of themost widely used services available today isGitHub.
In fact, this book has a Git repository on GitHub!

• The local repository is a copy of the remote repository stored on your computer (locally).
This is the repository to which you make all your additions, changes and deletions. When
you reach a particular milestone, you can then push all your local changes to the remote
repository. From there, you can instruct your team members to retrieve your changes. This
concept is known as pulling from the remote repository. We’ll subsequently explain pushing
and pulling in a bit more detail.

• The local index is technically part of the local repository. The local index stores a list of files
that you want to be managed with version control. This is explained in more detail later in
this chapter. You can have a look here to see a discussion on what exactly a Git index contains.

www.tangowithdjango.com

http://www.sbf5.com/~cduan/technical/git/git-1.shtml
http://www.sbf5.com/~cduan/technical/git/git-1.shtml
http://www.seifeet.com/2012/11/centos-63-configuring-git-server.html
https://github.com/
https://github.com/leifos/tango_with_django_19
http://stackoverflow.com/questions/4084921/what-does-the-git-index-exactly-contains

A Git Crash Course 243

• The final aspect of Git is your workspace. Think of this folder or directory as the place
on your computer where you make changes to your version controlled files. From within
your workspace, you can add new files or modify or remove previously existing ones. From
there, you then instruct Git to update the repositories to reflect the changes you make in your
workspace. This is important - don’t modify code inside the local repository - you only ever
edit files in your workspace.

Next, we’ll be looking at how to get your Git workspace set up and ready to go. We’ll also discuss
the basic workflow you should use when using Git.

Setting up Git

We assume that you’ve got Git installed with the software to go. One easy way to test the software
out is to simply issue git to your terminal or Command Prompt. If you don’t see a command not

found error, you’re good to go. Otherwise, have a look at how to install Git to your system.

Using Git on Windows
Like Python, Git doesn’t come as part of a standard Windows installation. However,
Windows implementations of the version control system can be downloaded and installed.
You can download the official Windows Git client from the Git website. The installer
provides the git command line program, which we use in this crash course. You can also
download a program called TortoiseGit, a graphical extension to the Windows Explorer
shell. The program provides a really nice right-click Git context menu for files. This makes
version control really easy to use. You can download TortoiseGit for free. Although we do
not cover how to use TortoiseGit in this crash course, many tutorials exist online for it.
Check this tutorial if you are interested in using it.

We recommend however that you stick to the command line program. We’ll be using the
commands in this crash course. Furthermore, if you switch to a UNIX/Linux development
environment at a later stage, you’ll be glad you know the commands!

Setting up your Git workspace is a straightforward process. Once everything is set up, you will
begin to make sense of the directory structure that Git uses. Assume that you have signed up for
a new account on GitHub and created a new repository on the service for your project. With your
remote repository setup, follow these steps to get your local repository and workspace setup on your
computer. We’ll assume you will be working from your <workspace> directory.

1. Open a terminal and navigate to your home directory (e.g. $ cd ∼).
2. Clone the remote repository - or in other words, make a copy of it. Check out how to do this

below.
3. Navigate into the newly created directory. That’s your workspace in which you can add files

to be version controlled!

www.tangowithdjango.com

http://git-scm.com/download/win
https://code.google.com/p/tortoisegit/
http://robertgreiner.com/2010/02/getting-started-with-git-and-tortoisegit-on-windows/
https://github.com/
https://help.github.com/articles/create-a-repo

A Git Crash Course 244

How to Clone a Remote Repository

Cloning your repository is a straightforward process with the git clone command. Supplement
this command with the URL of your remote repository - and if required, authentication details, too.
The URL of your repository varies depending on the provider you use. If you are unsure of the URL
to enter, it may be worth querying it with your search engine or asking someone in the know.

For GitHub, try the following command, replacing the parts below as appropriate:

$ git clone https://<USER>:<PASS>@github.com/<OWNER>/<REPO_NAME>.git <workspace>

where you replace

• <USER> with your GitHub username;
• <PASS> with your GitHub password;
• <OWNER> with the username of the person who owns the repository;
• <REPO_NAME> with the name of your project’s repository; and
• <workspace>with the name for your workspace directory. This is optional; leaving this option
out will simply create a directory with the same name as the repository.

If all is successful, you’ll see some text like the example shown below.

$ git clone https://github.com/leifos/tango_with_django_19

Cloning into 'tango_with_django_19'...

remote: Counting objects: 18964, done.

remote: Total 18964 (delta 0), reused 0 (delta 0), pack-reused 18964

Receiving objects: 100% (18964/18964), 99.69 MiB | 3.51 MiB/s, done.

Resolving deltas: 100% (13400/13400), done.

Checking connectivity... done.

If the output lines end with done, everything should have worked. Check your filesystem to see if
the directory has been created.

Not using GitHub?
There are many websites that provide Git repositories - some free, some paid. While this
chapter uses GitHub, you are free to usewhatever service youwish. Other providers include
Atlassian Bitbucket and Unfuddle. You will of course have to change the URL from which
you clone your repository if you use a service other than GitHub.

www.tangowithdjango.com

https://bitbucket.org/
https://unfuddle.com/

A Git Crash Course 245

The Directory Structure

Once you have cloned your remote repository onto your local computer, navigate into the directory
with your terminal, Command Prompt or GUI file browser. If you have cloned an empty repository
the workspace directory should appear empty. This directory is therefore your blank workspace with
which you can begin to add your project’s files.

However, the directory isn’t blank at all! On closer inspection, you will notice a hidden directory
called .git. Stored within this directory are both the local repository and local index. Do not alter
the contents of the .git directory.Doing so could damage your Git setup and break version control
functionality. Your newly created workspace therefore actually contains within it the local repository
and index.

Final Tweaks

With your workspace setup, now would be a good time to make some final tweaks. Here, we discuss
two cool features you can try which could make your life (and your team members’) a little bit
easier.

When using your Git repository as part of a team, any changes you make will be associated with
the username you use to access your remote Git repository. However, you can also specify your full
name and e-mail address to be included with changes that are made by you on the remote repository.
Simply open a Command Prompt or terminal and navigate to your workspace. From there, issue two
commands: one to tell Git your full name, and the other to tell Git your e-mail address.

$ git config user.name "John Doe"

$ git config user.email "johndoe123@me.com"

Obviously, replace the example name and e-mail address with your own - unless your name actually
is John Doe.

Git also provides you with the capability to stop - or ignore - particular files from being added
to version control. For example, you may not wish a file containing unique keys to access web
services from being added to version control. If the file were to be added to the remote repository,
anyone could theoretically access the file by cloning the repository. With Git, files can be ignored
by including them in the .gitignore file, which resides in the root of <workspace>. When adding
files to version control, Git parses this file. If a file that is being added to version control is listed
within .gitignore, the file is ignored. Each line of .gitignore should be a separate file entry.

Check out the following example of a .gitignore file:

`config/api_keys.py`

`*.pyc`

www.tangowithdjango.com

A Git Crash Course 246

In this example file, there are two entries - one on each line. The first entry prompts Git to ignore
the file api_keys.py residing within the config directory of your repository. The second entry then
prompts Git to ignore all instance of files with a .pyc extension, or compiled Python files. This is a
really nice feature: you can use wildcards to make generic entries if you need to!

.gitignore - What else should I ignore?
There are many kinds of files you could safely ignore from being committed and pushed
to your Git repositories. Examples include temporary files, databases (that can easily
be recreated) and operating system-specific files. Operating system-specific files include
configurations for the appearance of the directory when viewed in a given file browser.
Windows computers create thumbs.db files, while OS X creates .DS_Store files.

When you create a new repository on GitHub, the service can offer to create a .gitignore
file based upon the languages you will use in your project, which can save you some time
setting everything up.

www.tangowithdjango.com

A Git Crash Course 247

Basic Commands and Workflow

With your repository cloned and ready to go on your local computer, you’re ready to get to grips
with the Git workflow. This section shows you the basic Git workflow - and the associated Git
commands you can issue.

A Figure of the Git Workflow

We have provided a pictorial representation of the basic Git workflow as shown above. Match each
of the numbers in the black circles to the numbered descriptions below to read more about each
stage. Refer to this diagram whenever you’re unsure about the next step you should take - it’s
very useful!

1. Starting Off

Before you can start work on your project, you must prepare Git. If you haven’t yet sorted out your
project’s Git workspace, you’ll need to clone your repository to set it up.

If you’ve already cloned your repository, it’s good practice to get into the habit of updating your
local copy by using the git pull command. This pulls the latest changes from the remote repository
onto your computer. By doing this, you’ll be working from the same page as your team members.
This will reduce the possibility of conflicting versions of files, which really does make your life a bit
of a nightmare.

www.tangowithdjango.com

A Git Crash Course 248

To perform a git pull, first navigate to your <workspace> directory within your Command Prompt
or terminal, then issue git pull. Check out the snippet below from a Bash terminal to see exactly
what you need to do, and what output you should expect to see.

$ cd <workspace>

$ git pull

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), done.

From https://github.com/someuser/somerepository

86a0b3b..a7cec3d master -> origin/master

Updating 86a0b3b..a7cec3d

Fast-forward

README.md | 1 +

1 file changed, 1 insertion(+)

create mode 100644 README.md

This example shows that a README.md file has been updated or created from the latest pull.

Getting an Error?
If you receive fatal: Not a git repository (or any of the parent directories):

.git, you’re not in the correct directory. You need cd to your workspace directory - the
one in which you cloned your repository to. A majority of Git commands only work when
you’re in a Git repository.

Pull before you Push!
Always git pull on your local copy of your repository before you begin to work.Always!

Before you are about to push, do another pull.

Remember to talk to your team to coordinate your activity so you are not working on the
same files, or using branching.

2. Doing Some Work!

Once your workspace has been cloned or updated with the latest changes, it’s time for you to get
some work done! Within your workspace directory, you can take existing files and modify them.
You can delete them too, or add new files to be version controlled.

www.tangowithdjango.com

A Git Crash Course 249

When you modify your repository in any way, you need to keep Git up-to-date of any changes.
Doing so allows Git to update your local index. The list of files stored within the local index are then
used to perform your next commit, which we’ll be discussing in the next step. To keep Git informed,
there are several Git commands that let you update the local index. Three of the commands are near
identical to those that were discussed in the Unix Crash Course (e.g. cp, mv), with the addition of a
git prefix.

• The first command git add allows you to request Git to add a particular file to the next
commit for you. A common newcomer mistake is to assume that git add is used for adding
new files to your repository only - this is not the case. You must tell Git what modified files
you wish to commit, too. The command is invoked by typing git add <filename>, where
<filename> is the name of the file you wish to add to your next commit. Multiple files and
directories can be added with the command git add . - but be careful with this.

• git mv performs the same function as the Unix mv command - it moves files. The only
difference between the two is that git mv updates the local index for you before moving
the file. Specify the filename with the syntax git mv <current_filename> <new_filename>.
For example, with this command you can move files to a different directory within your
repository. This will be reflected in your next commit. The command is also used to rename
files - from the old filename to the new.

• git cp allows you to make a copy of a file or directory while adding references to the new
files into the local index for you. The syntax is the same as git mv above where the filename
or directory name is specified thus: git cp <current_filename> <copied_filename>.

• The command git rm adds a file or directory delete request into the local index. While the git
rm command does not delete the file straight away, the requested file or directory is removed
from your filesystem and the Git repository upon the next commit. The syntax is similar to the
git add command, where a filename can be specified thus: git rm <filename>. Note that you
can add a large number of requests to your local index in one go, rather than removing each
file manually. For example, git rm -rf media/ creates delete requests in your local index
for the media/ directory. The r switch enables Git to recursively remove each file within the
media/ directory, while f allows Git to forcibly remove the files. Check out the Wikipedia
page on the rm command for more information.

Lots of changes between commits can make things pretty confusing. You may easily forget what
files you’ve already instructed Git to remove, for example. Fortunately, you can run the git status

command to see a list of files which have been modified from your current working directory, but
haven’t been added to the local index for processing. Check out typical output from the command
below to get a taste of what you can see.

www.tangowithdjango.com

http://stackoverflow.com/a/16969786
http://en.wikipedia.org/wiki/Rm_(Unix)#Options
http://en.wikipedia.org/wiki/Rm_(Unix)#Options

A Git Crash Course 250

Working with .gitignore

If you have set up your .gitignore file correctly, you’ll notice that files matching those
specified within the .gitignore file are…ignored when you git add them. This is the
intended behaviour - these files are not supposed to be committed to version control! If
you however do need a file to be included that is in .gitignore, you can force Git to
include it if necessary with the git add -f <filename> command.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: chapter-unix.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter-git.md

From this example above, we can see that the file chapter-unix.md has been added to the latest
commit, and will therefore be updated in the next git push. The file chapter-git.md has been
updated, but git add hasn’t been run on the file, so the changes won’t be applied to the repository.

Checking Status
For further information on the git status command, check out the official Git documen-
tation.

3. Committing your Changes

We’vementioned committing several times in the previous step - but what does it mean? Committing
is when you save changes - which are listed in the local index - that you have made within your
workspace. The more often you commit, the greater the number of opportunities you’ll have to
revert back to an older version of your code if things go wrong. Make sure you commit often, but
don’t commit an incomplete or broken version of a particular module or function. There’s a lot of
discussion as to when the ideal time to commit is. Have a look at this Stack Overflow page for
the opinions of several developers. It does however make sense to commit only when everything is
working. If you find you need to roll back to a previous commit only to find nothing works, you
won’t be too happy.

To commit, you issue the git commit command. Any changes to existing files that you have indexed
will be saved to version control at this point. Additionally, any files that you’ve requested to be

www.tangowithdjango.com

http://git-scm.com/docs/git-status
http://git-scm.com/docs/git-status
http://stackoverflow.com/questions/1480723/dvcs-how-often-and-when-to-commit-changes

A Git Crash Course 251

copied, removed, moved or added to version control via the local index will be undertaken at this
point. When you commit, you are updating the HEAD of your local repository.

Commit Requirements
In order to successfully commit, you need to modify at least one file in your repository and
instruct Git to commit it, through the git add command. See the previous step for more
information on how to do this.

As part of a commit, it’s incredibly useful to your future self and others to explain why you
committed when you did. You can supply an optional message with your commit if you wish to
do so. Instead of simply issuing git commit, run the following amended command.

$ git commit -m "Updated helpers.py to include a Unicode conversion function."

From the example above, you can see that using the -m switch followed by a string provides you with
the opportunity to append a message to your commit. Be as explicit as you can, but don’t write too
much. People want to see at a glance what you did, and do not want to be bored or confused with a
long essay. At the same time, don’t be too vague. Simply specifying Updated helpers.py may tell
a developer what file you modified, but they will require further investigation to see exactly what
you changed.

Sensible Commits
Although frequent commits may be a good thing, you will want to ensure that what you
have written actuallyworks before you commit. This may sound silly, but it’s an incredibly
easy thing to not think about. To reiterate, committing code which doesn’t actually work
can be infuriating to your teammembers if they then rollback to a version of your project’s
codebase which is broken!

4. Synchronising your Repository

Important when Collaborating
Synchronising your local repository before making changes is crucial to ensure you
minimise the chance for conflicts occurring. Make sure you get into the habit of doing
a pull before you push.

After you’ve committed your local repository and committed your changes, you’re just about ready
to send your commit(s) to the remote repository by pushing your changes. However, what if someone

www.tangowithdjango.com

http://stackoverflow.com/questions/2304087/what-is-git-head-exactly

A Git Crash Course 252

within your group pushes their changes before you do? This means your local repository will be out
of sync with the remote repository, meaning that any git push command that you issue will fail.

It’s therefore always a good idea to check whether changes have beenmade on the remote repository
before updating it. Running a git pull command will pull down any changes from the remote
repository, and attempt to place them within your local repository. If no changes have been made,
you’re clear to push your changes. If changes have been made and cannot be easily rectified, you’ll
need to do a little bit more work.

In scenarios such as this, you have the option to merge changes from the remote repository.
After running the git pull command, a text editor will appear in which you can add a comment
explaining why the merge is necessary. Upon saving the text document, Git will merge the changes
from the remote repository to your local repository.

Editing Merge Logs
If you do see a text editor on your Mac or Linux installation, it’s probably the vi text
editor. If you’ve never used vi before, check out this helpful page containing a list of basic
commands on the Colorado State University Computer Science Department website. If
you don’t like vi, you can change the default text editor that Git calls upon. Windows
installations most likely will bring up Notepad.

5. Pushing your Commit(s)

Pushing is the phrase used by Git to describe the sending of any changes in your local repository
to the remote repository. This is the way in which your changes become available to your other
team members, who can then retrieve them by running the git pull command in their respective
local workspaces. The git push command isn’t invoked as often as committing - you require one or
more commits to perform a push. You could aim for one push per day, when a particular feature is
completed, or at the request of a team member who is after your updated code.

To push your changes, the simplest command to run is:

$ git push origin master

As explained on this Stack Overflow question and answer page this command instructs the git

push command to push your local master branch (where your changes are saved) to the origin (the
remote server from which you originally cloned). If you are using a more complex setup involving
branching and merging, alter master to the name of the branch you wish to push.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Vi
http://www.cs.colostate.edu/helpdocs/vi.html
http://www.cs.colostate.edu/helpdocs/vi.html
http://git-scm.com/book/en/Customizing-Git-Git-Configuration#Basic-Client-Configuration
http://stackoverflow.com/questions/7311995/what-is-git-push-origin-master-help-with-gits-refs-heads-and-remotes
http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging

A Git Crash Course 253

Important Push?
If your git push is particularly important, you can also alert other team members to the
fact they should really update their local repositories by pulling your changes. You can
do this through a pull request. Issue one after pushing your latest changes by invoking
the command git request-pull master, where master is your branch name (this is the
default value). If you are using a service such as GitHub, the web interface allows you to
generate requests without the need to enter the command. Check out the official GitHub
website’s tutorial for more information.

Recovering from Mistakes

This section presents a solution to a coder’s worst nightmare: what if you find that your code
no longer works? Perhaps a refactoring went terribly wrong, or another team member without
discussion changed something. Whatever the reason, using a form of version control always gives
you a last resort: rolling back to a previous commit. This section details how to do just that. We
follow the information given from this Stack Overflow question and answer page.

Changes may be Lost!
You should be aware that this guide will rollback your workspace to a previous iteration.
Any uncommitted changes that you have made will be lost, with a very slim chance of
recovery! Be wary. If you are having a problem with only one file, you could always view
the different versions of the files for comparison. Have a look at this Stack Overflow page
to see how to do that.

Rolling back your workspace to a previous commit involves two steps: determining which commit
to roll back to, an performing the rollback. To determine what commit to rollback to, you can make
use of the git log command. Issuing this command within your workspace directory will provide
a list of recent commits that you made, your name and the date at which you made the commit.
Additionally, the message that is stored with each commit is displayed. This is where it is highly
beneficial to supply commit messages that provide enough information to explain what is going on.
Check out the following output from a git log invocation below to see for yourself.

www.tangowithdjango.com

https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests
http://stackoverflow.com/questions/2007662/rollback-to-an-old-commit-using-git
http://stackoverflow.com/a/3338145

A Git Crash Course 254

commit 88f41317640a2b62c2c63ca8d755feb9f17cf16e <- Commit hash

Author: John Doe <someaddress@domain.com> <- Author

Date: Mon Jul 8 19:56:21 2013 +0100 <- Date/time

Nearly finished initial version of the requirements chapter <- Message

commit f910b7d557bf09783b43647f02dd6519fa593b9f

Author: John Doe <someaddress@domain.com>

Date: Wed Jul 3 11:35:01 2013 +0100

Added in the Git figures to the requirements chapter.

commit c97bb329259ee392767b87cfe7750ce3712a8bdf

Author: John Doe <someaddress@domain.com>

Date: Tue Jul 2 10:45:29 2013 +0100

Added initial copy of Sphinx documentation and tutorial code.

commit 2952efa9a24dbf16a7f32679315473b66e3ae6ad

Author: John Doe <someaddress@domain.com>

Date: Mon Jul 1 03:56:53 2013 -0700

Initial commit

From this list, you can choose a commit to rollback to. For the selected commit, you must take the
commit hash - the long string of letters and numbers. To demonstrate, the top (or HEAD) commit hash
in the example output above is 88f41317640a2b62c2c63ca8d755feb9f17cf16e. You can select this
in your terminal and copy it to your computer’s clipboard.

With your commit hash selected, you can now rollback your workspace to the previous revision.
You can do this with the git checkout command. The following example command would rollback
to the commit with hash 88f41317640a2b62c2c63ca8d755feb9f17cf16e.

$ git checkout 88f41317640a2b62c2c63ca8d755feb9f17cf16e .

Make sure that you run this command from the root of your workspace, and do not forget to include
the dot at the end of the command! The dot indicates that you want to apply the changes to the entire
workspace directory tree. After this has completed, you should then immediately commit with a
message indicating that you performed a rollback. Push your changes and alert your collaborators -
perhaps with a pull request. From there, you can start to recover from the mistake by putting your
head down and getting on with your project.

www.tangowithdjango.com

A Git Crash Course 255

Exercises
If you haven’t undertaken what we’ve been discussing in this chapter already, you should
go through everything now to ensure your Git repository is ready to go. To try everything
out, you can create a new file README.md in the root of your <workspace> directory. The
file will be used by GitHub to provide information on your project’s GitHub homepage.

• Create the file, and write some introductory text to your project.
• Add the file to the local index upon completion of writing, and commit your changes.
• Push the new file to the remote repository and observe the changes on the GitHub
website.

Once you have completed these basic steps, you can then go back and edit the readme file
some more. Add, commit and push - and then try to revert to the initial version to see if it
all works as expected.

There’s More!
There are other more advanced features of Git that we have not covered in this chapter.
Examples include branching and merging, which are useful for projects with different
release versions, for example. There are many fantastic tutorials available online if you
are interested in taking you super-awesome version control skills a step further. For more
details about such features take a look at this tutorial on getting started with Git, the Git
Guide or Learning about Git Branching.

However, if you’re only using this chapter as a simple guide to getting to grips with Git,
everything that we’ve covered should be enough. Good luck!

www.tangowithdjango.com

https://help.github.com/articles/github-flavored-markdown
http://veerasundar.com/blog/2011/06/git-tutorial-getting-started/
http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://pcottle.github.io/learnGitBranching/

A CSS Crash Course
In Web development, we use Cascading Style Sheets (CSS) to describe the presentation of a HTML
document (i.e. its look and feel).

Each element within a HTML document can be styled. The CSS for a given HTML element describes
how it is to be rendered on screen. This is done by ascribing values to the different properties
associated with an element. For example, the font-size property could be set to 24pt to make any
text contained within the specified HTML element to appear at 24pt. We could also set the text-
align property to a value of right to make text appear within the HTML element on the right-hand
side.

CSS Properties
There are many, many different CSS properties that you can use in your stylesheets. Each
provides a different functionality. Check out the W3C website and HTML Dog for lists of
available properties. pageresource.com also has a neat list of properties, with descriptions of
what each one does. Check out Section css-course-reading-label for a more comprehensive
set of links.

CSSworks by following a select and apply pattern - for a specified element, a set of styling properties
are applied. Take a look at the following example in the figure below, where we have some HTML
containing <h1> tags. In the CSS code example, we specify that all h1 be styled. We’ll come back
to selectors later on in this chapter. For now though, you can assume the CSS style defined will be
applied to our <h1> tags. The style contains four properties:

• font-size, setting the size of the font to 16pt;
• font-style, which when set to italic italicises the contents of all <h1> tags within the
document;

• text-align centres the text of the <h1> tags (when set to center); and
• color, which sets the colour of the text to red via hexadecimal code #FF0000.

With all of these properties applied, the resultant page render can be seen in the browser as shown
in the figure below.

http://www.w3.org/TR/CSS2/propidx.html
http://www.htmldog.com/reference/cssproperties/
http://www.pageresource.com/dhtml/cssprops.htm
http://www.w3schools.com/cssref/css_selectors.asp
http://html-color-codes.com/

A CSS Crash Course 257

Illustration demonstrating the rendered output of the sample HTML markup and CSS stylesheet shown. Pay
particular attention to the CSS example - the colours are used to demonstrate the syntax used to define styles
and the property/value pairings associated with them.

What you see is what you (may or may not) get
Due to the nature of web development, what you see isn’t necessarily what you’ll get.
This is because different browsers have their own way of interpreting web standards and
so the pages may be rendered differently. This quirk can unfortunately lead to plenty of
frustration, but today’s modern browsers (or developers) are much more in agreement as
to how different components of a page should be rendered.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Web_standards

A CSS Crash Course 258

Including Stylesheets

Including stylesheets in your webpages is a relatively straightforward process, and involves
including a <link> tag within your HTML’s <head>. Check out the minimal HTML markup sample
below for the attributes required within a <link> tag.

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" type="text/css" href="URL/TO/stylesheet.css" />

<title>Sample Title</title>

</head>

<body>

<h1>Hello world!</h1>

</body>

</html>

As can be seen from above, there are at minimum three attributes that youmust supply to the <link>
tag:

• rel, which allows you to specify the relationship between the HTML document and the
resource you’re linking to (i.e., a stylesheet);

• type, in which you should specify the MIME type for CSS; and
• href, the attribute which you should point to the URL of the stylesheet you wish to include.

With this tag added, your stylesheet should be included with your HTML page, and the styles within
the stylesheet applied. It should be noted that CSS stylesheets are considered as a form of static
media, meaning you should place them within your project’s static directory.

Inline CSS
You can also add CSS to your HTML documents inline, meaning that the CSS is included
as part of your HTML page. However, this isn’t generally advised because it removes the
abstraction between presentational semantics (CSS) and content (HTML).

Basic CSS Selectors

CSS selectors are used to map particular styles to particular HTML elements. In essence, a CSS
selector is a pattern. Here, we cover three basic forms of CSS selector: element selectors, id selectors
and class selectors. Later on in this chapter, we also touch on what are known as pseudo-selectors.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Internet_media_type

A CSS Crash Course 259

Element Selectors

Taking the CSS example from the rendering example shown above, we can see that the selector h1
matches to any <h1> tag. Any selector referencing a tag like this can be called an element selector.
We can apply element selectors to any HTML element such as <body>, <h1>, <h2>, <h3>, <p> and
<div>. These can be all styled in a similar manner. However, using element selectors is pretty crude -
styles are applied to all instances of a particular tag. We usually want a more fine-grained approach
to selecting what elements we style, and this is where id selectors and class selectors come into play.

ID Selectors

The id selector is used to map to a unique element on your webpage. Each element on your webpage
can be assigned a unique id via the id attribute, and it is this identifier that CSS uses to latch styles
onto your element. This type of selector begins with a hash symbol (#), followed directly by the
identifier of the element you wish to match to. Check out the figure below for an example

An illustration demonstrating the use of an id selector in CSS. Note the blue header has an identifier which
matches the CSS attribute #blue_header.

Class Selectors

The alternative option is to use class selectors. This approach is similar to that of id selectors, with
the difference that you can legitimately target multiple elements with the same class. If you have a
group of HTML elements that you wish to apply the same style to, use a class-based approach. The

www.tangowithdjango.com

A CSS Crash Course 260

selector for using this method is to precede the name of your class with a period (.) before opening
up the style with curly braces ({ }). Check out the figure below for an example.

An illustration demonstrating the use of a class selector in CSS. The blue headers employ the use of the .blue

CSS style to override the red text of the h1 style.

Ensure ids are Unique
Try to use id selectors sparingly. Ask yourself: do I absolutely need to apply an identifier to
this element in order to target it? If you need to apply a given set of styles to more than one
element, the answer will always be no. In cases like this, you should use a class or element
selector.

Fonts

Due to the huge number available, using fonts has historically been a pitfall when it comes to web
development. Picture this scenario: a web developer has installed and uses a particular font on his
or her webpage. The font is pretty arcane - so the probability of the font being present on other
computers is relatively small. A user who visits the developer’s webpage subsequently sees the page
rendered incorrectly as the font is not present on their system. CSS tackles this particular issue with
the font-family property.

The value you specify for font-family can be a list of possible fonts - and the first one your computer
or other device has installed is the font that is used to render the webpage. Text within the specified

www.tangowithdjango.com

http://net.tutsplus.com/tutorials/html-css-techniques/the-30-css-selectors-you-must-memorize/

A CSS Crash Course 261

HTML element subsequently has the selected font applied. The example CSS shown below applies
Arial if the font exists. If it doesn’t, it looks for Helvetica. If that font doesn’t exist, any available
sans-serif font is applied.

h1 {

font-family: 'Arial', 'Helvetica', sans-serif;

}

In 1996, Microsoft started the core fonts for the Web initiative with the aim of guaranteeing a
particular set of fonts to be present on all computers. Today however, you can use pretty much
any font you like - check out Google Fonts for examples of the fonts that you can use and this Web
Designer Depot article on how to use such fonts.

Colours and Backgrounds

Colours are important in defining the look and feel of your website. You can change the colour of
any element within your webpage, ranging from background colours to borders and text. In this
book, we make use of words and hexadecimal colour codes to choose the colours we want. As you
can see from the list of basic colours shown in the figure below, you can supply either a hexadecimal
or RGB (red-green-blue) value for the colour you want to use. You can also specify words to describe
your colours, such as green, yellow or blue.

Pick Colours Sensibly
Take great care when picking colours to use on your webpages. If you select colours that
don’t contrast well, people simply won’t be to read your text! There are many websites
available that can help you pick out a good colour scheme - try colorcombos.com for
starters.

Applying colours to your elements is a straightforward process. The property that you use depends
on the aspect of the element you wish to change! The following subsections explain the relevant
properties and how to apply them.

www.tangowithdjango.com

http://en.wikipedia.org/wiki/Sans-serif
http://en.wikipedia.org/wiki/Core_fonts_for_the_Web
http://www.google.com/fonts
http://www.webdesignerdepot.com/2013/01/how-to-use-any-font-you-like-with-css3/
http://www.webdesignerdepot.com/2013/01/how-to-use-any-font-you-like-with-css3/
http://www.w3schools.com/colors/colors_names.asp
http://www.w3schools.com/colors/colors_names.asp
http://www.colorcombos.com/

A CSS Crash Course 262

Illustration of some basic colours with their corresponding hexadecimal and RGB values.

There are many different websites that you can use to aid you in picking the right hexadecimal
codes to enter into your stylesheets. You aren’t simply limited to the nine examples above! Try out
html-color-codes.com for a simple grid of colours and their associated six character hexadecimal
code. You can also try sites such as color-hex.com which gives you fine grained control over the
colours you can choose.

Hexadecimal Colour Codes
For more information on how colours are coded with hexadecimal, check out this thorough
tutorial.

Watch your English!
As you may have noticed, CSS uses American/International English to spell words. As
such, there are a few words that are spelt slightly differently compared to their British
counterparts, like color and center. If you have grown up in the United Kingdom, double
check your spelling and be prepared to spell it the wrong way!

www.tangowithdjango.com

http://html-color-codes.com/
http://www.color-hex.com/color-wheel/
http://www.quackit.com/css/css_color_codes.cfm
http://www.quackit.com/css/css_color_codes.cfm

A CSS Crash Course 263

Text Colours

To change the colour of text within an element, you must apply the color property to the element
containing the text you wish to change. The following CSS for example changes all the text within
an element using class red to…red!

.red {

color: #FF0000;

}

You can alter the presentation of a small portion of text within your webpage by wrapping the text
within tags. Assign a class or unique identifier to the element, and from there you can simply
reference the tag in your stylesheet while applying the color property.

Borders

You can change the colour of an element’s borders, too. We’ll discuss what borders are discussed as
part of the CSS boxmodel. For now, we’ll show you how to apply colours to them tomake everything
look pretty.

Border colours can be specified with the border-color property. You can supply one colour for all
four sides of your border, or specify a different colour for each side. To achieve this, you’ll need to
supply different colours, each separated by a space.

.some-element {

border-color: #000000 #FF0000 #00FF00

}

In the example above, we use multiple colours to specify a different colour for three sides. Starting
at the top, we rotate clockwise. Thus, the order of colours for each side would be top right bottom

left.

Our example applies any element with class some-elementwith a black top border, a red right border
and a green bottom border. No left border value is supplied, meaning that the left-hand border is left
transparent. To specify a colour for only one side of an element’s border, consider using the border-
top-color, border-right-color, border-bottom-color and border-left-color properties where
appropriate.

Background Colours

You can also change the colour of an element’s background through use of the CSS background-

color property. Like the color property described above, the background-color property can be
easily applied by specifying a single colour as its value. Check out the example below which applies
a bright green background to the entire webpage. Not very pretty!

www.tangowithdjango.com

A CSS Crash Course 264

body {

background-color: #00FF00;

}

Background Images

Of course, a colour isn’t the only way to change your backgrounds. You can also apply background
images to your elements, too. We can achieve this through the background-image property.

#some-unique-element {

background-image: url('../images/filename.png');

background-color: #000000;

}

The example above makes use of filename.png as the background image for the element with
identifier some-unique-element. The path to your image is specified relative to the path of your CSS
stylesheet. Our example above uses the double dot notation to specify the relative path to the image.
Don’t provide an absolute path here; it won’t work as you expect! We also apply a black background
colour to fill the gaps left by our background image - it may not fill the entire size of the element.

Background Image Positioning
By default, background images default to the top-left corner of the relevant element and
are repeated on both the horizontal and vertical axes. You can customise this functionality
by altering how the image is repeated with the background-image property. You can also
specify where the image is placed by default with the background-position property.

Containers, Block-Level and Inline Elements

Throughout the crash course thus far, we’ve introduced you to the element but have
neglected to tell you what it is. All will become clear in this section as we explain inline and block-
level elements.

A is considered to be a so-called container element. Along with a <div> tag, these elements
are themselves meaningless and are provided only for you to contain and separate your page’s
content in a logical manner. For example, you may use a <div> to contain markup related to a
navigation bar, with another <div> to contain markup related to the footer of your webpage. As
containers themselves are meaningless, styles are usually applied to help control the presentational
semantics of your webpage.

Containers come in two flavours: block-level elements and inline elements. Check out the figure
below for an illustration of the two kinds in action, and read on for a short description of each.

www.tangowithdjango.com

http://programmers.stackexchange.com/a/186719
http://www.w3schools.com/cssref/pr_background-repeat.asp
http://www.w3schools.com/cssref/pr_background-position.asp

A CSS Crash Course 265

Diagram demonstrating how block-level elements and inline elements are rendered by default. With block-level
elements as green, note how a line break is taken between each element. Conversely, inline elements can appear
on the same line beside each other. You can also nest block-level and inline elements within each other, but
block-level elements cannot be nested within an inline element.

Block-Level Elements

In simple terms, block-level elements are by default rectangular in shape and spread across the entire
width of the containing element. Block-level elements therefore by default appear underneath each
other. The rectangular structure of each block-level element is commonly referred to as the box
model, which we discuss later on in this chapter. A typical block-level element you will use is the
<div> tag, short for division.

Block-level elements can be nested within other block-level elements to create a hierarchy of
elements. You can also nest inline elements within block-level elements, but not vice-versa! Read
on to find out why.

Inline Elements

An inline element does exactly what it says on the tin. These elements appear inline to block-level
elements on your webpage, and are commonly found to be wrapped around text. You’ll find that
 tags are commonly used for this purpose.

This text-wrapping application was explained in the text colours section, where a portion of text
could be wrapped in tags to change its colour. The corresponding HTML markup would
look similar to the example below.

www.tangowithdjango.com

A CSS Crash Course 266

<div>

This is some text wrapped within a block-level element. Th\

is text is wrapped within an inline element! But this text isn't.

</div>

Refer back to the nested blocks figure above to refresh your mind about what you can and cannot
nest before you move on.

Basic Positioning

An important concept that we have not yet covered in this CSS crash course regards the positioning
of elements within your webpage.Most of the time, you’ll be satisfied with inline elements appearing
alongside each other, and block-level elements appearing underneath each other. These elements are
said to be positioned statically.

However, there will be scenarios where you require a little bit more control on where everything
goes. In this section, we’ll briefly cover three important techniques for positioning elements within
your webpage: floats, relative positioning and absolute positioning.

Floats

CSS floats are one of the most straightforward techniques for positioning elements within your
webpage. Using floats allows us to position elements to the left or right of a particular container -
or page.

Let’s work through an example. Consider the following HTML markup and CSS code.

<div class="container">

Span 1

Span 2

</div>

www.tangowithdjango.com

A CSS Crash Course 267

.container {

border: 1px solid black;

}

.yellow {

background-color: yellow;

border: 1px solid black;

}

.red {

background-color: red;

border: 1px solid black;

}

This produces the output shown below.

We can see that each element follows its natural flow: the container element with class container
spans the entire width of its parent container, while each of the elements are enclosed inline
within the parent. Now suppose that we wish to then move the red element with text Span 2 to the
right of its container. We can achieve this by modifying our CSS .red class to look like the following
example.

.red {

background-color: red;

border: 1px solid black;

float: right;

}

By applying the float: right; property and value pairing, we should then see something similar
to the example shown below.

Note how the .red element now appears at the right of its parent container, .container. We have
in effect disturbed the natural flow of our webpage by artificially moving an element! What if we
then also applied float: left; to the .yellow ?

www.tangowithdjango.com

A CSS Crash Course 268

This would float the .yellow element, removing it from the natural flow of the webpage. In effect,
it is not sitting on top of the .container container. This explains why the parent container does
not now fill down with the elements like you would expect. You can apply the overflow:
hidden; property to the parent container as shown below to fix this problem. For more information
on how this trick works, have a look at this QuirksMode.org online article.

.container {

border: 1px solid black;

overflow: hidden;

}

Applying overflow: hidden ensures that our .container pushes down to the appropriate height.

Relative Positioning

Relative positioning can be used if you require a greater degree of control over where elements
are positioned on your webpage. As the name may suggest to you, relative positioning allows you
to position an element relative to where it would otherwise be located. We make use of relative
positioning with the position: relative; property and value pairing. However, that’s only part of
the story.

Let’s explain how this works. Consider our previous example where two elements are sitting
within their container.

<div class="container">

Span 1

Span 2

</div>

www.tangowithdjango.com

http://www.quirksmode.org/css/clearing.html

A CSS Crash Course 269

.container {

border: 1px solid black;

height: 200px;

}

.yellow {

background-color: yellow;

border: 1px solid black;

}

.red {

background-color: red;

border: 1px solid black;

}

This produces the following result - just as we would expect. Note that we have artificially increased
the height of our container element to 150 pixels. This will allow us more room with which to play
with.

Now let’s attempt to position our .red element relatively. First, we apply the position:

relative property and value pairing to our .red class, like so.

.red {

background-color: red;

border: 1px solid black;

position: relative;

}

This has no effect on the positioning of our .red element. What it does do however is change the
positioning of .red from static to relative. This paves the way for us to specify where - from the
original position of our element - we now wish the element to be located.

www.tangowithdjango.com

A CSS Crash Course 270

.red {

background-color: red;

border: 1px solid black;

position: relative;

left: 150px;

top: 80px;

}

By applying the left and top properties as shown in the example above, we are wanting the .red
element to be pushed 150 pixels from the left. In other words, we move the element 150 pixels to the
right. Think about that carefully! The top property indicates that the element should be pushed 80
pixels from the top of the element. The result of our experimentation can be seen below.

From this behaviour, we can see that the properties right and bottom push elements from the right
and bottom respectively. We can test this out by applying the properties to our .yellow class as
shown below.

.yellow {

background-color: yellow;

border: 1px solid black;

float: right;

position: relative;

right: 10px;

bottom: 10px;

}

This produces the following output. The .yellow container is pushed into the top left-hand corner
of our container by pushing up and to the right.

www.tangowithdjango.com

A CSS Crash Course 271

Order Matters
What happens if you apply both a top and bottom property, or a left and right property?
Interestingly, the first property for the relevant axis is applied. For example, if bottom is
specified before top, the bottom property is used.

We can even apply relative positioning to elements that are floated. Consider our earlier example
where the two elements were positioned on either side of the container by floating .red to
the right.

We can then alter the .red class to the following.

.red {

background-color: red;

border: 1px solid black;

float: right;

position: relative;

right: 100px;

}

This means that relative positioning works from the position at which the element would have
otherwise been at - regardless of any other position changing properties being applied.

Absolute Positioning

Our final positioning technique is absolute positioning. While we still modify the position

parameter of a style, we use absolute as the value instead of relative. In contrast to relative

www.tangowithdjango.com

A CSS Crash Course 272

positioning, absolute positioning places an element relative to its first parent element that has a
position value other than static. This may sound a little bit confusing, but let’s go through it step by
step to figure out what exactly happens.

First, we can again take our earlier example of the two coloured elements within a <div>

container. The two elements are placed side-by-side as they would naturally.

<div class="container">

Span 1

Span 2

</div>

.container {

border: 1px solid black;

height: 70px;

}

.yellow {

background-color: yellow;

border: 1px solid black;

}

.red {

background-color: red;

border: 1px solid black;

}

This produces the output shown below. Note that we again set our .container height to an artificial
value of 70 pixels to give us more room.

We now apply absolute positioning to our .red element.

www.tangowithdjango.com

A CSS Crash Course 273

.red {

background-color: red;

border: 1px solid black;

position: absolute;

}

Like with relative positioning, this has no overall effect on the positioning of our red element in the
webpage. We must apply one or more of top, bottom, left or right in order for a new position to
take effect. As a demonstration, we can apply top and left properties to our red element like in the
example below.

.red {

background-color: red;

border: 1px solid black;

position: absolute;

top: 0;

left: 0;

}

Wow, what happened here? Our red element is now positioned outside of our container! You’ll note
that if you run this code within your own web browser window, the red element appears in the
top left-hand corner of the viewport. This therefore means that our top, bottom, left and right

properties take on a slightly different meaning when absolute positioning is concerned.

As our container element’s position is by default set to position: static, the red and yellow
elements are moving to the top left and bottom right of our screen respectively. Let’s now modify
our .yellow class to move the yellow to 5 pixels from the bottom right-hand corner of our
page. The .yellow class now looks like the example below.

www.tangowithdjango.com

A CSS Crash Course 274

.yellow {

background-color: yellow;

border: 1px solid black;

position: absolute;

bottom: 5px;

right: 5px;

}

This produces the following result.

But what if we don’t want our elements to be positioned absolutely in relation to the entire page?
More often than not, we’ll be looking to adjusting the positioning of our elements in relation to a
container. If we recall our definition for absolute positioning, we will note that absolute positions
are calculated relative to the first parent element that has a position value other than static. As
our container is the only parent for our two elements, the container to which the absolutely
positioned elements is therefore the <body> of our HTML page. We can fix this by adding position:
relative; to our .container class, just like in the example below.

.container {

border: 1px solid black;

height: 70px;

position: relative;

}

This produces the following result. .container becomes the first parent element with a position
value of anything other than relative, meaning our elements latch on!

Our elements are now absolutely positioned in relation to .container. Great! Now, let’s adjust the
positioning values of our two elements to move them around.

www.tangowithdjango.com

A CSS Crash Course 275

.yellow {

background-color: yellow;

border: 1px solid black;

position: absolute;

top: 20px;

right: 100px;

}

.red {

background-color: red;

border: 1px solid black;

position: absolute;

float: right;

bottom: 50px;

left: 40px;

}

Note that we also apply float: right; to our .red element. This is to demonstrate that unlike
relative positioning, absolute positioning ignores any other positioning properties applied to an
element. top: 10px for example will always ensure that an element appears 10 pixels down from its
parent (set with position: relative;), regardless of whether the element has been floated or not.

The Box Model

When using CSS, you’re never too far away from using padding, borders and margins. These
properties are some of the most fundamental styling techniques which you can apply to the elements
within your webpages. They are incredibly important and are all related to what we call the CSS
box model.

Each element that you create on a webpage can be considered as a box. The CSS boxmodel is defined
by the W3C as a formal means of describing the elements or boxes that you create, and how they
are rendered in your web browser’s viewport. Each element or box consists of four separate areas,
all of which are illustrated in the figure below. The areas - listed from inside to outside - are the
content area, the padding area, the border area and the margin area.

www.tangowithdjango.com

http://www.w3.org/TR/CSS2/box.html
http://www.w3.org/

A CSS Crash Course 276

An illustration demonstrating the CSS box model, complete with key showing the four areas of the model.

For each element within a webpage, you can create a margin, apply some padding or a border with
the respective properties margin, padding and border. Margins clear a transparent area around the
border of your element; meaning margins are incredibly useful for creating a gap between elements.
In contrast, padding creates a gap between the content of an element and its border. This therefore
gives the impression that the element appears wider. If you supply a background colour for an
element, the background colour is extended with the element’s padding. Finally, borders are what
you might expect them to be - they provide a border around your element’s content and padding.

For more information on the CSS box model, check out addedbytes excellent explanation of the
model. Why not even order a t-shirt with the box model on it?

Watch out for the width!
As you may gather from the box model illustration, the width of an element isn’t defined
simply by the value you enter as the element’s width. Rather, you should always consider
the width of the border and padding on both sides of your element. This can be represented
mathematically as:

total_width = content_width + left padding + right padding + left border +

left margin + right margin

Don’t forget this. You’ll save yourself a lot of trouble if you don’t!

Styling Lists

Lists are everywhere. Whether you’re reading a list of learning outcomes for a course or a reading a
list of times for the train, you know what a list looks like and appreciate its simplicity. If you have a
list of items on a webpage, why not use a HTML list? Using lists within your webpages - according
to Brainstorm and Raves - promotes good HTML document structure, allowing text-based browsers,
screen readers and other browsers that do not support CSS to render your page in a sensible manner.

Lists however don’t look particularly appealing to end-users. Take the following HTML list that
we’ll be styling as we go along trying out different things.

www.tangowithdjango.com

http://www.addedbytes.com/articles/for-beginners/the-box-model-for-beginners/
http://www.addedbytes.com/articles/for-beginners/the-box-model-for-beginners/
http://cssboxmodel.com/
http://brainstormsandraves.com/articles/semantics/structure/
http://brainstormsandraves.com/articles/semantics/structure/

A CSS Crash Course 277

<ul class="sample-list">

Django

How to Tango with Django

Two Scoops of Django

Rendered without styling, the list looks pretty boring.

Let’s make some modifications. First, let’s get rid of the ugly bullet points. With our element
already (and conveniently) set with class sample-list, we can create the following style.

.sample-list {

list-style-type: none;

}

This produces the following result. Note the lack of bullet points!

Let’s now change the orientation of our list. We can do this by altering the display property of each
of our list’s elements (). The following style maps to this for us.

.sample-list li {

display: inline;

}

When applied, our list elements now appear on a single line, just like in the example below.

www.tangowithdjango.com

A CSS Crash Course 278

While we may have the correct orientation, our list now looks awful. Where does one element start
and the other end? It’s a complete mess! Let’s adjust our list element style and add some contrast
and padding to make things look nicer.

.example-list li {

display: inline;

background-color: #333333;

color: #FFFFFF;

padding: 10px;

}

When applied, our list looks so much better - and quite professional, too!

From the example, it is hopefully clear that lists can be easily customised to suit the requirements of
your webpages. For more information and inspiration on how to style lists, you can check out some
of the selected links below.

• Have a look at this excellent tutorial on styling lists on A List Apart.
• Have a look at this about.com article which demonstrates how to use your own bullets!
• Check out this advanced tutorial fromWebDesignerWall that uses graphics tomake awesome
looking lists. In the tutorial, the author uses Photoshop - you could try using a simpler graphics
package if you don’t feel confident with Photoshop.

• This awesome site compilation from devsnippets.com provides some great inspiration and tips
on how you can style lists.

The possibilities of styling lists are endless! You could say it’s a never-ending list…

Styling Links

CSS provides you with the ability to easily style hyperlinks in any way you wish. You can change
their colour, their font or any other aspect that you wish - and you can even change how they look
when you hover over them!

Hyperlinks are represented within a HTML page through the <a> tag, which is short for anchor. We
can apply styling to all hyperlinks within your webpage as shown in following example.

www.tangowithdjango.com

http://alistapart.com/article/taminglists/
http://webdesign.about.com/od/css/a/aa012907.htm
http://webdesignerwall.com/tutorials/advanced-css-menu
http://devsnippets.com/article/styling-your-lists.html

A CSS Crash Course 279

a {

color: red;

text-decoration: none;

}

Every hyperlink’s text colour is changed to red, with the default underline of the text removed. If
we then want to change the color and text-decoration properties again when a user hovers over
a link, we can create another style using the so-called pseudo-selector :hover. Our two styles now
look like the example below.

a {

color: red;

text-decoration: none;

}

a:hover {

color: blue;

text-decoration: underline;

}

This produces links as shown below. Notice the change in colour of the second link - it is being
hovered over.

You may not however wish for the same link styles across the entire webpage. For example, your
navigation bar may have a dark background while the rest of your page has a light background. This
would necessitate having different link stylings for the two areas of your webpage. The example
below demonstrates how you can apply different link styles by using a slightly more complex CSS
style selector.

#dark {

background-color: black;

}

#dark a {

color: white;

text-decoration: underline;

}

#dark a:hover {

color: aqua;

www.tangowithdjango.com

http://css-tricks.com/pseudo-class-selectors/

A CSS Crash Course 280

}

.light {

background-color: white;

}

.light a {

color: black;

text-decoration: none;

}

.light a:hover {

color: olive;

text-decoration: underline;

}

We can then construct some simple markup to demonstrate these classes.

<div id="dark">

Google Search

</div>

<div class="light">

Bing Search

</div>

The resultant output looks similar to the example shown below. Code up the example above, and
hover over the links in your browser to see the text colours change!

With a small amount of CSS, you can make some big changes in the way your webpages appear to
users.

The Cascade

It’s worth pointing out where the Cascading in Cascading Style Sheets comes into play. Looking
back at the CSS rendering example way back at the start of this chapter, you will notice that the red

www.tangowithdjango.com

A CSS Crash Course 281

text shown is bold, yet no such property is defined in our h1 style. This is a perfect example of what
we mean by cascading styles. Most HTML elements have associated with them a default style which
web browsers apply. For <h1> elements, the W3C website provides a typical style that is applied. If
you check the typical style, you’ll notice that it contains a font-weight: bold; property and value
pairing, explaining where the bold text comes from. As we define a further style for <h1> elements,
typical property/value pairings cascade down into our style. If we define a new value for an existing
property/value pairing (such as we do for font-size), we override the existing value. This process
can be repeated many times - and the property/value pairings at the end of the process are applied
to the relevant element. Check out the figure below for a graphical representation of the cascading
process.

Illustration demonstrating the cascading in Cascading Style Sheets at work. Take note of the font-size property
in our h1 style - it is overridden from the default value. The cascading styles produce the resultant style, shown
on the right of the illustration.

Additional Reading

What we’ve discussed in this section is by no means a definitive guide to CSS. There are 300-page
books devoted to CSS alone! What we have provided you with here is a very brief introduction
showing you the very basics of what CSS is and how you can use it.

As you develop your web applications, you’ll undoubtedly run into issues and frustrating problems
with styling web content. This is part of the learning experience, and you still have a bit to learn.
We strongly recommend that you invest some time trying out several online tutorials about CSS -
there isn’t really any need to buy a book (unless you want to).

• The W3C provides a neat tutorial on CSS, taking you by the hand and guiding you through
the different stages required. They also introduce you to several new HTML elements along
the way, and show you how to style them accordingly.

• W3Schools also provides some cool CSS tutorials. Instead of guiding you through the process
of creating a webpage with CSS, W3Schools has a series of mini-tutorials and code examples

www.tangowithdjango.com

http://www.w3.org/TR/html-markup/h1.html#h1-display
http://www.amazon.co.uk/Professional-CSS-Cascading-Sheets-Design/dp/047017708X
http://www.amazon.co.uk/Professional-CSS-Cascading-Sheets-Design/dp/047017708X
http://www.w3.org/Style/Examples/011/firstcss.en.html
http://www.w3schools.com/css/css_examples.asp

A CSS Crash Course 282

to show you to achieve a particular feature, such as setting a background image. We highly
recommend that you have a look here.

• html.net has a series of lessons on CSS which you can work through. Like W3Schools, the
tutorials on html.net are split into different parts, allowing you to jump into a particular part
you may be stuck with.

This list is by no means exhaustive, and a quick web search will indeed yield much more about CSS
for you to chew on. Just remember: CSS can be tricky to learn, and there may be times where you
feel you want to throw your computer through the window. We say this is pretty normal - but take
a break if you get to that stage. We’ll be tackling some more advanced CSS stuff as we progress
through the tutorial in the next few sections.

CSS And Browser Compatibility
With an increasing array of devices equipped with more and more powerful processors,
we can make our web-based content do more. To keep up, CSS has constantly evolved to
provide new and intuitive ways to express the presentational semantics of our SGML-based
markup. To this end, support for relatively new CSS properties may be limited on several
browsers, which can be a source of frustration. The only way to reliably ensure that your
website works across a wide range of different browsers and platforms is to test, test and
test some more!

www.tangowithdjango.com

http://html.net/tutorials/css/
http://blogs.adobe.com/dreamweaver/2015/12/the-evolution-of-css.html
http://www.quackit.com/css/css3/properties/
http://browsershots.org/
http://browsershots.org/

	Table of Contents
	Overview
	Why Work with this Book?
	What you will Learn
	Technologies and Services
	Rango: Initial Design and Specification
	Summary

	Getting Ready to Tango
	Python
	The Python Package Manager
	Virtual Environments
	Integrated Development Environment
	Code Repository

	Django Basics
	Testing Your Setup
	Creating Your Django Project
	Creating a Django Application
	Creating a View
	Mapping URLs
	Basic Workflows

	Templates and Media Files
	Using Templates
	Serving Static Media Files
	Serving Media
	Basic Workflow

	Models and Databases
	Rango's Requirements
	Telling Django about Your Database
	Creating Models
	Creating and Migrating the Database
	Django Models and the Shell
	Configuring the Admin Interface
	Creating a Population Script
	Workflow: Model Setup

	Models, Templates and Views
	Workflow: Data Driven Page
	Showing Categories on Rango's Homepage
	Creating a Details Page

	Forms
	Basic Workflow
	Page and Category Forms

	Working with Templates
	Using Relative URLs in Templates
	Dealing with Repetition
	Template Inheritance
	The render() Method and the request Context
	Custom Template Tags
	Summary

	User Authentication
	Setting up Authentication
	Password Hashing
	Password Validators
	The User Model
	Additional User Attributes
	Creating a User Registration View and Template
	Implementing Login Functionality
	Restricting Access
	Logging Out
	Taking it Further

	Cookies and Sessions
	Cookies, Cookies Everywhere!
	Sessions and the Stateless Protocol
	Setting up Sessions in Django
	A Cookie Tasting Session
	Client Side Cookies: A Site Counter Example
	Session Data
	Browser-Length and Persistent Sessions
	Clearing the Sessions Database
	Basic Considerations and Workflow

	User Authentication with Django-Registration-Redux
	Setting up Django Registration Redux
	Functionality and URL mapping
	Setting up the Templates

	Bootstrapping Rango
	The New Base Template
	Quick Style Change
	Using Django-Bootstrap-Toolkit

	Bing Search
	The Bing Search API
	Adding Search Functionality
	Putting Search into Rango

	Making Rango Tango! Exercises
	Track Page Clickthroughs
	Searching Within a Category Page
	Create and View Profiles

	Making Rango Tango! Hints
	Track Page Clickthroughs
	Searching Within a Category Page
	Creating a UserProfile Instance
	Viewing your Profile
	Listing all Users

	JQuery and Django
	Including JQuery in Your Django Project/App
	DOM Manipulation Example

	AJAX in Django with JQuery
	AJAX based Functionality
	Add a Like Button
	Adding Inline Category Suggestions

	Automated Testing
	Running Tests
	Coverage Testing

	Deploying Your Project
	Creating a PythonAnywhere Account
	The PythonAnywhere Web Interface
	Creating a Virtual Environment
	Setting up Your Web Application
	Log Files

	Final Thoughts
	Acknowledgements

	Appendices
	Setting up your System
	Installing Python
	Setting Up the PYTHONPATH
	Using setuptools and pip
	Virtual Environments
	Version Control

	A Crash Course in UNIX-based Commands
	Using the Terminal
	Core Commands

	A Git Crash Course
	Why Use Version Control?
	How Git Works
	Setting up Git
	Basic Commands and Workflow
	Recovering from Mistakes

	A CSS Crash Course
	Including Stylesheets
	Basic CSS Selectors
	Element Selectors
	Fonts
	Colours and Backgrounds
	Containers, Block-Level and Inline Elements
	Basic Positioning
	The Box Model
	Styling Lists
	Styling Links
	The Cascade
	Additional Reading

